COURSE NAME:	Aerial Surveying & Mapping Techniques
TOTAL DURATION:	45 Hrs
MODE OF DELIVERY	PHYSICAL CLASSROOM TRAINING AT RESPECTIVE
	COLLEGES
TRAINER TO	1:50
STUDENT RATIO:	
TOTAL MARKS:	75

	Table 1
OVERALL COURSE OBJECTIVE:	 Enable learners to understand and compare different drone technologies, sensors, and their applications in data collection. Equip learners with skills to design and execute flight plans while adhering to safety protocols and operational guidelines. Provide learners with the expertise to process drone
	 data using photogrammetry and GIS tools to create actionable outputs. 4. Guide learners in integrating drone data with advanced analysis techniques for innovative problem-solving in various fields. 5. Empower learners to present data-driven recommendations effectively through well-structured reports, visualizations, and project presentations.

LEARNING	1. Analyze drone technologies and data types to evaluate				
_	, , , , , , , , , , , , , , , , , , , ,				
OUTCOME:	their suitability for various applications, including				
	survey and mapping tasks.				
	2. Design efficient flight plans and data collection				
	strategies that ensure safety, regulatory compliance, and optimal data quality.				
	Evaluate processing tools and techniques to generate				
	high-quality outputs like Ortho mosaics, 3D models,				
	and GIS-compatible maps.				
	Develop innovative solutions using advanced spatial				
	analysis and integration of drone data for real-world				
	decision-making.				
	5. Create compelling reports and presentations that				
	effectively communicate actionable insights and				
	propose solutions to stakeholders.				

SL.N O	N MODULE MODUL NAME E CONTE NT		MODULE LEARNING OUTCOME	DURATIO N (HRS)	
1	Drone Technologies and Data Fundamentals	 Compare different drone technologies and their applications. Analyze types of data collected by drones, including images, LiDAR, and multispectral data. 	 Differentiate between drone technologies based on capabilities and applications. Categorize drone- captured data into appropriate formats for further analysis. 	9	
2	Flight Planning and Data Acquisition	 Design safe and efficient flight paths for data collection. Test various survey techniques and apply safety protocols during operations. 	 Construct effective flight plans to optimize data collection. Justify survey and safety strategies for different operational contexts. 	9	

3	Data Processing and Photogrammet ry	 Evaluate data formats and software tools used for drone data processing. Develop Ortho mosaics, 3D models, and stitched images using photogrammetr y techniques. 	 Appraise the suitability of software tools for specific data types. Create high-quality visual outputs like maps and 3D models from raw drone data. 	
4	GIS Integration and Advanced Analysis	 Integrate drone data into GIS platforms for spatial analysis. Analyze multispectral and thermal imaging data for applications such as vegetation health and heat mapping 	 Evaluate GIS tools for their effectiveness in visualizing and interpreting drone data. Innovate solutions by analysing advanced data for decision- making in targeted scenarios 	
5	Data Interpretatio n and Practical Applications	 Conduct hands- on data analysis using real-world datasets. 	 Critique 9 processed data for accuracy and usability in decision- making. 	

	 Develop and present a comprehensive project using drone data for a specified application. 	 Propose data-driven solutions through well- structured final project presentation s. 	
--	---	--	--

TABLE 3: OVERALL COURSE LEARNING OUTCOME ASSESSMENT CRITERIA AND USE CASES				
Learning	Assessment	Performance	Use Cases	
Outcome	Criteria	Criteria		
Analyze	Compare the	Categorize	Evaluate the	
aerial and	outputs from	datasets based	effectiveness of	
ground	drones and	on source and	drones versus	
survey data	ground-based	reliability;	traditional methods	
	GPS tools for	identify	for creating digital	
	accuracy and	discrepancies.	elevation models.	
	consistency.			
Evaluate data	Critique the	Assess errors in	Propose methods to	
integration	integration of	combined	reduce spatial	
strategies	aerial and ground	datasets and	distortions in urban	
	survey datasets.	validate	land-use mapping.	
	Justify	integration		
	techniques used	outputs.		
	for merging			
	datasets			
	effectively.			
Design	Develop detailed	Create	Generate a drone	
survey	flight plans	optimized plans	survey mission to	
missions for	including	demonstrating	monitor	
diverse	altitude, overlap,	efficiency,	environmental	
environments	and sensor	safety, and	changes in a coastal	
	settings for	compliance	region.	
	specific	with regulatory		
	applications.	standards.		
Create	Develop visual	Formulate	Propose sustainable	
actionable	reports with	compelling	land-use strategies	

insights from processed survey data	actionable recommendation s for stakeholders.	presentations with maps, 3D models, and analysis summaries tailored to the target audience.	based on vegetation index data derived from multispectral drone imagery.
Innovate	Present a project	Construct	Invent a drone-
solutions to real-world	proposing novel applications of	detailed project proposals	based solution for flood monitoring and
challenges	drone technology	supported by	early warning in
using	to address	data, technical	rural regions.
advanced	complex	justifications,	
drone data	surveying	and feasibility	
	challenges.	studies.	

	TABLE 4: LIST OF FINAL PROJECTS			
SL.NO	FINAL PROJECT			
1	Campus Mapping			
2	Agricultural Land Analysis			
3	Park or Recreational Area Survey			
4	Disaster Management Mapping			
5	Urban Land Use Mapping			
6	Heritage Site Documentation			
7	Coastal Area Monitoring			
8	Wildlife Habitat Survey			
9	Transportation and Road Mapping			
10	Environmental Impact Assessment			
11	Renewable Energy Site Survey (e.g., solar farm layout)			
12	Watershed Mapping and Analysis			
13	Vegetation Health Monitoring in Urban Areas			
14	Tourism and Recreation Mapping for Local Attractions			
15	Flood Risk Assessment Using Aerial Survey Data			
16	Infrastructure Mapping for Road Repairs or New Construction			
17	Forest Density and Deforestation Mapping			
18	Riverbank Erosion and Monitoring Study			

19	Urban Heat Island Effect Analysis Through Aerial Imaging
20	Mapping and Accessibility Assessment of Public Transport
	Routes

TABLE	TABLE 5: COURSE ASSESSMENT RUBRICS (TOTAL MARKS: 75)						
ASSESSM ENT CRITERI A	Learning Outcom e	Fair (0–5)	Good (6– 10)	Excellent (11–15)	TOT AL MAR KS		
Data Loading and Cleaning	Analyze aerial and ground survey data	Displays limited ability to identify discrepancies or categorize datasets; lacks consistency in comparing drone and ground- based data outputs.	Demonstrate s an adequate ability to categorize datasets, with occasional discrepancies ; basic but functional comparison of drone and GPS outputs.	Accurately categorizes datasets, identifies all discrepancies , and provides detailed analysis comparing drone and GPS outputs for accuracy.	15		
Flight Planning and Execution	Design survey missions for diverse environm ents	Develops incomplete or inefficient flight plans; limited safety and compliance consideration s.	Creates reasonably effective flight plans with basic safety measures and compliance; shows some understandin g of efficiency in settings like altitude and overlap.	Constructs optimized, detailed flight plans that ensure safety, compliance, and high efficiency in sensor settings and overlap for diverse scenarios.	15		
Data Integratio n and Processing	Evaluate data integratio n strategies	Shows limited ability to critique or validate integration	Demonstrate s a fair ability to critique and validate	Critiques integration strategies thoroughly, validates	15		

		techniques; outputs contain significant errors.	integration techniques; some errors in combined datasets, but basic justification is provided.	outputs with minimal errors, and justifies all techniques used effectively.	
Data Visualizati on and Interpreta tion	Create actionabl e insights from processe d survey data	Visual reports lack clarity or actionable recommenda tions; insights are poorly communicate d or incomplete.	Produces adequate reports with basic recommenda tions; visualizations highlight insights reasonably but lack advanced clarity or creativity.	Delivers exceptional reports with actionable recommenda tions, advanced visualizations , and impactful presentation s tailored to the audience.	15
Innovative Solutions Using Drone Data	Innovate solutions to real- world challenge s using advanced drone data	Proposals lack novelty or technical justification; insufficient supporting data or feasibility analysis.	Proposes reasonably innovative solutions with fair technical justification and supporting data; feasibility analysis is partially complete.	Presents highly innovative solutions with strong technical justifications, comprehensi ve supporting data, and a well-detailed feasibility analysis.	15