NAAN MUDHALVAN - POLYTECHNIC - ODD SEMESTER 2025-26

COURSE CURRICULUM

ADDITIVE MANUFACTURING

ABOUT THE COURSE

This course introduces students to the principles and technologies of Additive Manufacturing (AM), commonly known as 3D printing. The students will explore key AM techniques such as FDM, SLS, SLA, and SLM, gain proficiency in CAD modelling, slicing software, and printer setup, and work with various materials like polymers, metals, and composites. Through industry-relevant case studies and hands-on projects, the students will develop practical skills in design, printing, post-processing, and real-world application of AM in diverse sectors.

COURSE NAME:	Additive Manufacturing
TOTAL DURATION:	60 HRS
MODE OF DELIVERY	PHYSICAL CLASSROOM TRAINING AT RESPECTIVE
	COLLEGES
TRAINER TO	1:60
STUDENT RATIO:	
TOTAL MARKS:	70 (External) + 30 (Internal)

TABLE 1		
OVERALL COURSE OBJECTIVE	 Analyse the fundamental principles of additive manufacturing, including how 3D printing creates objects layer by layer. Apply various additive manufacturing technologies such as Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS), Stereolithography (SLA), and Selective Laser Melting (SLM). Evaluate the differences, advantages, and limitations of each technology and how to select the appropriate one for different applications. Analyse the wide range of materials used in AM, including plastics, metals, ceramics, and composite. 	
LEARNING OUTCOME	 Selecting the right process for a given application based on material, geometry, and other factors. Design and prepare 3D models for additive manufacturing, ensuring they are optimized for printing, minimizing errors and material waste. Analyse the properties and applications of different AM materials, and the ability to choose 	

the right material for specific use cases, balancing performance and cost.
 Develop skills in various post-processing methods, allowing students to finish printed parts to meet required tolerances and surface finishes. Analyse real-world applications of additive manufacturing across different industries and assess its potential for solving complex manufacturing aballances.

	TABLE 2: MODULE-WISE COURSE CONTENT AND OUTCOME			
SL. NO.	MODULE NAME	MODULE CONTENT	MODULE LEARNING OUTCOME	DURATION (HRS)
1	Introduction to Additive Manufacturing	Overview of Additive Manufacturing (AM); History, Types of AM, Applications in various industries (Aerospace, Automotive, Medical, etc.).	Analyse the concept of Additive Manufacturing and its historical evolution. Identify various types of 3D printing technologies and their industrial applications.	3
2	AM Technologies and Processes	Detailed study of AM technologies: FDM (Fused Deposition Modeling), SLA (Stereolithography), SLS (Selective Laser Sintering), and others.	Apply the working principles of various 3D printing processes. Identify suitable applications for each AM technology.	6
3	Materials for Additive Manufacturing	Materials used in AM: Polymers, Metals, Ceramics, and Composite materials. Material properties, selection criteria, and challenges.	Evaluate different materials used in AM and their specific properties. Learn how to select materials based on process and application	5
4	CAD Modeling for Additive Manufacturing	Introduction to Computer-Aided Design (CAD); Designing for Additive Manufacturing (DFAM), Software	Using CAD principles, design parts for 3D printing. Apply the techniques to optimize designs for AM processes	6

		tools used for 3D	(e.g., minimizing	
		modelling	material use,	
		(AutoCAD,	ensuring	
		SolidWorks, etc.).	printability).	
5	Slicing	Introduction to	Use slicing	
	Software and	slicing software;	software to	5
	3D Printing	Process of	convert 3D	
	Setup	converting CAD files	models for AM.	
	•	into STL format;	Understand the	
		Setting up 3D	importance of	
		printers: Laver-	correct setup for	
		based printing.	3D printers to	
			ensure high-	
			quality prints	
6	Post-	Techniques after	Implement nost-	
0	Processing	printing: Support	nrocessing steps	1
	Techniques	removal polishing	in AM and learn	4
	rechniques	curing curface	how to achieve the	
		finishing and	docirod finish and	
		auality chocks	mochanical	
		quality checks.	proportion of 3D	
			properties of 5D	
7	Docian for	In donth study of		
/	Design for	design	Design	6
	Auditive	design	offectively for AM	6
	(DFAM)	AM: Geometry,	processes by	
		support structures,		
		orientation,	factors like part	
		overnangs, and infili	orientation,	
		patterns.	support	
			structures, and	
			geometry for	
			minimizing waste	
			and improving	
	-		strength.	
8	Applications of	Real-world	Evaluate various	
	Additive	applications of AM in	industrial	4
	Manufacturing	industries such as	applications of	
		automotive,	AM, learn through	
		aerospace, medical	case studies, and	
		devices, consumer	identify new	
		goods, and	opportunities for	
		architecture. Case	innovation using	
		studies of successful	3D printing.	
		applications		
9	Challenges	Challenges in AM:	Identify the	
	and Future	Speed, cost,	challenges	3
	Trends	material limitations,	currently faced by	
		quality control, and	the AM industry.	
		scalability. Future	Apply the	
		trends in AM	emerging trends	

		including multi- material printing, AI integration, and sustainable AM.	and future directions for AM technologies.	
10	Practical Demonstration and Hands-on Project	Hands-on training: Setting up a 3D printer, printing a simple object, post- processing techniques. Practical project development.	Apply knowledge of 3D printing technologies and processes to complete a hands- on project, from design to printing and post- processing.	5

TABLE 3: OVERALL COURSE LEARNING OUTCOME ASSESSMENT					
	ASSESSMENI PERFORMANCE		USECASES		
selecting the right process for a given application based on material, geometry, and other factors.	Knowledge of AM technologies and processes.	Correctly identify and explain different 3D printing processes (FDM, SLA, SLS, etc.) and their applications	Automotive part prototyping, Aerospace lightweight structures.		
Design and prepare 3D models for additive manufacturing, ensuring they are optimized for printing, minimizing errors and material waste.	Ability to select appropriate AM technology based on material and design requirements.	Demonstrate the ability to choose the correct AM process (e.g., FDM for prototypes, SLS for durable parts).	Creating custom prosthetics, Manufacturing of tooling and molds.		
Analyse the properties and applications of different AM materials, and the ability to choose the right material for specific use cases, balancing performance and cost.	Understanding material properties and selection.	Show proficiency in selecting materials based on strength, flexibility, thermal resistance, and cost.	Medical implants, Aerospace components, Functional prototypes.		

Develop skills in various post- processing methods, allowing students to finish printed parts to meet required tolerances and surface finishes.	Application of DFAM principles in CAD modeling.	Design parts that are optimized for 3D printing (e.g., minimizing material usage, reducing the need for support).	Creating intricate geometries for customized products, Designing lightweight structures for drones.
Slicing and 3D Printing Setup	Ability to use slicing software and configure 3D printers.	Successfully slice a 3D model and configure the 3D printer for efficient printing.	3D printing a mechanical part, Printing of architectural models.

T/ COI	ABLE 4: LIST OF FINAL PROJECTS (20 PROJECTS THAT MPREHENSIVELY COVER ALL THE LEARNING OUTCOME)		
	FINAL PROJECT		
SL.NO	(The Training Partner shall cover all the steps to complete a		
	given project)		
1	 Rapid Prototyping Task 1: Design a digital model of the product or component. Task 2: Slice the model into layers using slicing software. Task 3: Print the prototype using a 3D printer. Task 4: Perform a functional test on the prototype to check its design. Task 5: Refine the design based on feedback and print the revised prototype 		
2	 Custom Medical Implants Task 1: Obtain a 3D scan of the patient's anatomy (e.g., CT or MRI). Task 2: Design a custom implant based on the scan data. Task 3: Export the design as an STL file for printing. Task 4: Print the implant using biocompatible materials. Task 5: Conduct post-print quality control tests and prepare the implant for surgery. 		
3	 Aerospace Components Task 1: Design complex, lightweight parts for aerospace applications. Task 2: Optimize the part for strength and material usage using software. Task 3: Slice the design for 3D printing and choose the appropriate material. Task 4: Print the part using metal 3D printing or another suitable method. Task 5: Conduct performance testing, including stress and thermal tests. 		
4	 Aerospace Components Task 1: Design complex, lightweight parts for aerospace applications. 		

	• Task 2: Optimize the part for strength and material usage using
	software.
	• Task 3: Slice the design for 3D printing and choose the appropriate
	material.
	• Task 4: Print the part using metal 3D printing or another suitable
	method.
	• Task 5: Conduct performance testing, including stress and thermal
	tests
	Customized Footwear
	• Task 1: Scan the customer's feet to capture shape and size.
F	• Task 2: Design a custom since of sole using CAD soltware.
5	• Task 5. Choose materials suitable for footwear (e.g., TPO for floxibility)
	Task 4: Print the customized footwear
	• Task 5: Perform a wear test to ensure comfort and performance
	In a skip i renorm a wear test to ensure connort and performance.
	• Task 1: Design intricate jewellery pieces using CAD tools
	• Task 2: Create a 3D model of the piece incorporating design
	features like texture.
6	• Task 3: Convert the model into an STL file for 3D printing.
-	• Task 4: Print the jewellery using a resin printer or metal printer
	(for casting).
	• Task 5: Post-process the printed jewellery, including polishing and
	finishing.
	Spare Parts on Demand
	Task 1: Identify the broken or obsolete part needed.
	Task 2: Design a digital model of the replacement part.
7	Task 3: Choose the correct material for the part (e.g., metal,
	plastic).
	Task 4: Print the part to specifications.
	Task 5: Install the part in the machinery or equipment.
	Tooling and Jigs
	• Task 1: Design custom tooling, jigs, or fixtures based on
	• Task 2: Croate 3D models of the parts using CAD software
Q	 Task 2: Create 5D models of the parts using CAD software. Task 3: Print the tools using durable materials such as pylon or
0	carbon fibre
	• Task 4. Test the functionality and accuracy of the tools
	• Task 5: Adjust the design if necessary and reprint for further
	testing.
	Construction and Architecture
	• Task 1: Design building models or architectural elements using
	CAD tools.
	• Task 2: Use 3D printing to produce scaled models for
	presentations.
9	• Task 3: Optimize design structures for material efficiency and
	strength.
	• Task 4: Print detailed architectural models with concrete or
	composite materials.
	• Task 5: Assemble the printed components in a construction setting
	for full-scale implementation.

	Aerospace Heat Exchangers
10	Task 1: Design complex heat exchanger components with optimized
	airflow.
	• Task 2: Use software to simulate thermal performance.
	• Task 3: Choose the material (e.g., titanium or aluminum) for heat
	resistance.
	• Task 4: Print the neat exchanger with intricate lattice structures.
	• Task 5. Test the heat exchanger's performance under operating
	Educational Models
	Task 1: Identify the educational need for a specific 3D model (e.g.
	anatomy, molecular structure).
	• Task 2: Design or source educational 3D models.
11	• Task 3: Print the models using educational-grade materials.
	• Task 4: Conduct classroom demonstrations with printed models.
	• Task 5: Update or iterate on designs based on feedback and new
	learning objectives.
	Customized Eyewear
	Task 1: Take precise measurements of the customer's face and
	eyes.
10	 Task 2: Design a custom eyewear frame using CAD software. Task 3: Choose suitable materials (e.g. flexible polymers or line)
12	lightweight metals)
	• Task 4: Print the evewear frame using 3D printing technology.
	• Task 5: Fit the lenses into the frame and test for comfort and
	functionality
	Art and Sculpture
	• Task 1: Design the artwork or sculpture using 3D modeling
	software.
10	• Task 2: Choose the appropriate material for the sculpture (e.g.,
13	Tesili, PLA).
	• Task 3: Slice the design for 3D printing
	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer.
	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer. Task 5: Post-process the printed sculpture, including sanding,
	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer. Task 5: Post-process the printed sculpture, including sanding, painting, and finishing.
	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer. Task 5: Post-process the printed sculpture, including sanding, painting, and finishing. Consumer Electronics Enclosures
	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer. Task 5: Post-process the printed sculpture, including sanding, painting, and finishing. Consumer Electronics Enclosures Task 1: Design protective enclosures for electronics.
	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer. Task 5: Post-process the printed sculpture, including sanding, painting, and finishing. Consumer Electronics Enclosures Task 1: Design protective enclosures for electronics. Task 2: Optimize the design for airflow, heat dissipation, and
	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer. Task 5: Post-process the printed sculpture, including sanding, painting, and finishing. Consumer Electronics Enclosures Task 1: Design protective enclosures for electronics. Task 2: Optimize the design for airflow, heat dissipation, and accessibility.
14	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer. Task 5: Post-process the printed sculpture, including sanding, painting, and finishing. Consumer Electronics Enclosures Task 1: Design protective enclosures for electronics. Task 2: Optimize the design for airflow, heat dissipation, and accessibility. Task 3: Choose materials that are durable and heat-resistant
14	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer. Task 5: Post-process the printed sculpture, including sanding, painting, and finishing. Consumer Electronics Enclosures Task 1: Design protective enclosures for electronics. Task 2: Optimize the design for airflow, heat dissipation, and accessibility. Task 3: Choose materials that are durable and heat-resistant (e.g., ABS, polycarbonate). Task 4: Print the opclosure and accemble it with the internal
14	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer. Task 5: Post-process the printed sculpture, including sanding, painting, and finishing. Consumer Electronics Enclosures Task 1: Design protective enclosures for electronics. Task 2: Optimize the design for airflow, heat dissipation, and accessibility. Task 3: Choose materials that are durable and heat-resistant (e.g., ABS, polycarbonate). Task 4: Print the enclosure and assemble it with the internal electronic components.
14	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer. Task 5: Post-process the printed sculpture, including sanding, painting, and finishing. Consumer Electronics Enclosures Task 1: Design protective enclosures for electronics. Task 2: Optimize the design for airflow, heat dissipation, and accessibility. Task 3: Choose materials that are durable and heat-resistant (e.g., ABS, polycarbonate). Task 4: Print the enclosure and assemble it with the internal electronic components. Task 5: Test the enclosure's performance, including temperature
14	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer. Task 5: Post-process the printed sculpture, including sanding, painting, and finishing. Consumer Electronics Enclosures Task 1: Design protective enclosures for electronics. Task 2: Optimize the design for airflow, heat dissipation, and accessibility. Task 3: Choose materials that are durable and heat-resistant (e.g., ABS, polycarbonate). Task 4: Print the enclosure and assemble it with the internal electronic components. Task 5: Test the enclosure's performance, including temperature regulation and durability.
14	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer. Task 5: Post-process the printed sculpture, including sanding, painting, and finishing. Consumer Electronics Enclosures Task 1: Design protective enclosures for electronics. Task 2: Optimize the design for airflow, heat dissipation, and accessibility. Task 3: Choose materials that are durable and heat-resistant (e.g., ABS, polycarbonate). Task 4: Print the enclosure and assemble it with the internal electronic components. Task 5: Test the enclosure's performance, including temperature regulation and durability.
14	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer. Task 5: Post-process the printed sculpture, including sanding, painting, and finishing. Consumer Electronics Enclosures Task 1: Design protective enclosures for electronics. Task 2: Optimize the design for airflow, heat dissipation, and accessibility. Task 3: Choose materials that are durable and heat-resistant (e.g., ABS, polycarbonate). Task 4: Print the enclosure and assemble it with the internal electronic components. Task 5: Test the enclosure's performance, including temperature regulation and durability. Low-Volume Manufacturing Tasks:
14	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer. Task 5: Post-process the printed sculpture, including sanding, painting, and finishing. Consumer Electronics Enclosures Task 1: Design protective enclosures for electronics. Task 2: Optimize the design for airflow, heat dissipation, and accessibility. Task 3: Choose materials that are durable and heat-resistant (e.g., ABS, polycarbonate). Task 4: Print the enclosure and assemble it with the internal electronic components. Task 5: Test the enclosure's performance, including temperature regulation and durability. Low-Volume Manufacturing Tasks: Design a product for low-volume production.
14	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer. Task 5: Post-process the printed sculpture, including sanding, painting, and finishing. Consumer Electronics Enclosures Task 1: Design protective enclosures for electronics. Task 2: Optimize the design for airflow, heat dissipation, and accessibility. Task 3: Choose materials that are durable and heat-resistant (e.g., ABS, polycarbonate). Task 4: Print the enclosure and assemble it with the internal electronic components. Task 5: Test the enclosure's performance, including temperature regulation and durability. Low-Volume Manufacturing Tasks: Design a product for low-volume production. Create a digital model and select the best material for the
14	 Task 3: Slice the design for 3D printing. Task 4: Print the artwork layer by layer. Task 5: Post-process the printed sculpture, including sanding, painting, and finishing. Consumer Electronics Enclosures Task 1: Design protective enclosures for electronics. Task 2: Optimize the design for airflow, heat dissipation, and accessibility. Task 3: Choose materials that are durable and heat-resistant (e.g., ABS, polycarbonate). Task 4: Print the enclosure and assemble it with the internal electronic components. Task 5: Test the enclosure's performance, including temperature regulation and durability. Low-Volume Manufacturing Tasks: Design a product for low-volume production. Create a digital model and select the best material for the product.

	4. Print multiple units of the product in one print session. 5. Inspect the parts for quality and prepare them for shipping.
16	 Automotive Tooling & Prototyping Task 1: Design automotive components or tools using CAD. Task 2: Choose materials that match the functional needs of the part (e.g., strong composites). Task 3: Print prototypes or low-volume parts for testing. Task 4: Assemble the parts into an automotive prototype or production model. Task 5: Test the prototypes for fit, function, and performance in Poal world automotive conditions.
17	 Food Production Task 1: Design 3D printable food items using CAD software. Task 2: Select appropriate edible materials (e.g., chocolate, dough, or sugar). Task 3: Print the food products layer by layer using food-safe 3D printers. Task 4: Ensure food safety and hygiene during the production process. Task 5: Package and present the food products for consumption or sale.
18	 Metal 3D Printing for Tooling Task 1: Design specialized metal tools for specific manufacturing needs. Task 2: Choose the appropriate metal for the tool (e.g., steel, titanium). Task 3: Slice the design to optimize it for metal 3D printing. Task 4: Print the metal tools using a laser or electron beam melting process. Task 5: Post-process the printed metal tools with heat treatment or finishing.
19	 Spare Parts for Obsolete Machinery Task 1: Identify obsolete or damaged machinery parts that need replacement. Task 2: Reverse engineer the part by scanning or measuring it. Task 3: Create a 3D model of the part using CAD software. Task 4: Print the replacement part using the same material or a suitable alternative. Task 5: Install and test the replacement part in the machinery for proper functionality.
20	 Development of Custom Prosthetics Using 3D Printing Task 1: Understand the functional and aesthetic needs of prosthetic users. Task 2: Create a 3D design of a custom prosthetic limb based on user-specific data. Task 3: Print and assemble the prosthetic limb based on the CAD design. Task 4: Test the prosthetic limb's performance and gather feedback from the user. Task 5: Choose suitable materials for 3D printing that balance strength, flexibility, and cost.

TABLE 5: COURSE ASSESSMENT RUBRICS (TOTAL MARKS: 70)				
ASSESSMENT	DESCRIBE THE CRITERIA OF THE BELOW CATEGORY PERFORMANCE			TOTAL MARKS
	FAIR	GOOD	EXCELLENT	
Application of various types of additive manufacturing technologies	Basic understanding of key AM technologies, but lacks depth.	Solid understanding of AM principles with some application examples.	Deep understanding of AM technologies, clear articulation of process, and real-world examples.	10
Design for Additive Manufacturing (DFAM)	Able to design simple parts but struggles with optimization for AM.	Designs functional parts considering some DFAM principles.	Demonstrates advanced design skills, optimizing parts for 3D printing.	20
Material Selection and Application	Limited knowledge of material properties and selection for AM.	Correct material selection based on properties and application needs.	Expert material selection, considers performance, cost, and application suitability.	10
3D Printing and Slicing Software Usage	Basic operation of slicing software and printer setup.	Able to slice models and set up printers with few errors.	Expert use of slicing software and printer configuration with minimal issues.	20
Post- Processing Techniques	Limited understanding of post- processing methods.	Knowledge of basic post- processing techniques.	Comprehensive understanding and application of advanced post- processing methods	10
Total				70