Batteries & Management System.

Course Objectives	 Acquire comprehensive knowledge of the performance characteristics of various Li-ion batteries. Gain proficiency in design battery packs and perform essential calculations related to their configuration and performance. Demonstrate the ability to create and analyze battery models or simulations. Develop skills to accurately estimate the state-of-charge in battery packs. Insights into different BMS architectures and their application in real-world scenarios.
Course Outcomes	 application in real-world scenarios. Explore different Li-ion Batteries performance. Design a Battery Pack and make related calculations. Demonstrate a Battery Model or Simulation. Estimate State-of-Charges in a Battery Pack. Approach different BMS architectures during real world usage

Course Duration: 45 Hours

Course Curriculum:

UNIT I: ADVANCED BATTERIES

Li-ion Batteries-different formats, chemistry, safe operating area, efficiency, aging. Characteristics SOC, DOD, SOH. Balancing-Passive Balancing Vs Active Balancing. Other Batteries-NCM and NCA Batteries. *NCR18650B* specifications.

UNIT II: BATTERY PACK

Battery Pack- design, sizing, calculations, flow chart, real and simulation Mode, Peak power definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging.

UNITIII: BATTERY MODELLING

Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models Introduction, Battery Modelling software/simulation frameworks

UNIT IV: BATTERY STATE ESTIMATION

SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms.

UNIT V: BMS ARCHITECTURE AND REAL TIME COMPONENTS

Battery Management System- need, operation, classification. BMS ASICbq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex RayCANedge1 package.ARBIN Battery Tester. BMS Development with Modeling software and Model Based Design.

Test Projects:

Use Cases:

Industry Use-Cases

1. Design A battery management system Circuit for A Single Li- Ion battery cell with overvoltage and Reverse polarity protection. LEARNING OUTCOME

• Demonstrate a comprehensive understanding of EV AND HEV battery technology and its management.

ASSESSMENT CRITERIA

- Interpret the architecture of an Electric Vehicle
- Analyze integration and interface
- Identify components and functional blocks
- Select correct communication protocols

Task 1: Simulate The basic Electrical and Electronics Components inAutodesk Tinker cad Software (BJT And MOSFET Switching)

Task 2: Simulate A Function Generator and CRO Using Autodesk Tinker cad

Task 3: Simulate A Voltage Divider and Voltage Reference Using Autodesk Tinker cad

Task 4: Hands-on with the Different Components used in BMS And Simulate It Using Autodesk Tinker cad

Task 5: Design A BMS Circuit for a Single Li-ion Battery

2. Design A battery management system circuit for 4S1P with over voltage and over current protection.

LEARNING OUTCOME

• Implement efficient charging strategies and maintenance practices for EV and HEV batteries

- Interpret regulatory compliances
- Evaluate various protection systems
- Evaluate protection mechanisms

Task 1: Simulate The basic Electrical and Electronics Components in Autodesk Tinker cad Software (BJT And MOSFET Switching)

Task 2: Simulate A Function Generator and CRO Using Autodesk Tinker cad

Task 3: Simulate A Voltage Divider and Voltage Reference Using Autodesk Tinker cad

Task 4: Hands-On the Building A Battery Pack and Simulate It Using Autodesk Tinker cad

Task 5: Design A battery management system Circuit for 4S1P with overvoltage and over current protection

3. Design A Real-Time SOC Estimation Circuit for a Battery LEARNING OUTCOME

• Analyze battery data and apply diagnostic techniques for monitoring battery health.

ASSESSMENT CRITERIA

- Use diagnostic tools for assessing battery health
- Develop maintenance predictive strategies
- Perform health analysis of a battery

Task 1: Simulate The basic Electrical and Electronics Components inAutodesk Tinker cad Software (BJT And MOSFET Switching)

Task 2: Simulate A Function Generator and CRO Using Autodesk Tinker cadTask 3: Simulate A Battery and Measure Using a mega Microcontroller usingAutodesk Tinker cad

Task 4: Hands-On Programming in ATMEGA Microcontroller and Simulate it using Autodesk Tinker cad

Task 5: Design a Microcontroller Based SOC Estimation Circuit

4. Design A Real-Time Prediction Circuit for Battery Operation LEARNING OUTCOME

• Optimize EV AND HEV battery performance and lifespan through effective management techniques.

ASSESSMENT CRITERIA

- Evaluate various strategies to assess battery life
- Use software in optimizing EV AND HEV battery performance

Task 1: Simulate The basic Electrical and Electronics Components in Autodesk Tinker CAD Software (BJT And MOSFET Switching)

Task 2: Simulate A Function Generator and CRO Using Autodesk Tinker cad **Task 3:** Simulate A Battery Pack and Measure Using ATMEGA Microcontroller using Autodesk Tinker cad

Task 4: Hands-On Programming in ATMEGA Microcontroller and Simulate it Using Autodesk Tinker cad

5. Design A Real-Time Battery Testing and Monitoring System (Single Cell).

LEARNING OUTCOME

• Optimize EV battery performance and lifespan through effective management techniques.

ASSESSMENT CRITERIA

- Evaluate various strategies to assess battery life
- Use software in optimizing EV AND HEV battery performance

Task 1: Simulate The basic Electrical and Electronics Components inAutodesk Tinker cad Software (BJT And MOSFET Switching)

Task 2: Simulate A Function Generator and CRO Using Autodesk Tinker cad
Task 3: Simulate A Battery and Voltage Reference Using Autodesk Tinker cad
Task 4: Hands-On Programming in ATMEGA Microcontroller and Simulate it
Using Autodesk Tinker cad

Task 5: Design An ATMEGA Microcontroller Battery Testing Circuit

6. Design A Real-Time Battery Testing and Monitoring System (Battery Pack)

LEARNING OUTCOME

• Identify and discuss emerging trends and sustainable practices in EV AND HEV battery technology.

ASSESSMENT CRITERIA

- Identify techniques to integrate IoT techniques
- Utilizing ARM Microcontrollers for Battery Management
- Provide solutions for IoT integration

Task 1: Simulate The basic Electrical and Electronics Components inAutodesk Tinker cad Software (BJT And MOSFET Switching)

Task 2: Simulate A Function Generator and CRO Using Autodesk Tinker cad
Task 3: Simulate A Battery and Voltage Reference Using Autodesk Tinker cad
Task 4: Hands-On Programming in ATMEGA Microcontroller and Simulate it
Using Autodesk Tinker cad

Task 5: Design An ATMEGA Microcontroller Battery Testing Circuit.

7. Evolution and Technological Advancements of EV and HEV Batteries LEARNING OUTCOME

• Demonstrate a comprehensive understanding of the evolution and types of batteries used in EVs and HEVs.

ASSESSMENT CRITERIA

- Produce a detailed timeline of major advancements in battery technology.
- Compare and contrast at least three types of EV and HEV batteries.
- Deliver a presentation highlighting the importance of battery technology in modern vehicles.
- Analyze future trends and potential advancements in battery technology.

Task 1: Research the evolution of EV and HEV batteries over the past decade.

Task 2: Create a timeline showcasing major advancements in battery technology.

Task 3: Compare and contrast different types of batteries used in EVs and HEVs.

Task 4: Prepare a presentation on the importance of battery technology in modern vehicles.

Task 5: Discuss the future potential of battery technology in EVs and HEVs.

8. Comprehensive Design and Architectural Framework of Battery Management Systems

LEARNING OUTCOME

• Design and explain the architecture of a Battery Management System (BMS) and its components.

ASSESSMENT CRITERIA:

- Create a detailed sketch of a BMS architecture.
- Identify and describe the function of each component within the BMS.
- Develop a comprehensive flowchart illustrating the interaction between BMS components.
- Simulate and explain the data flow within the BMS using a software tool.

Task 1: Sketch a basic architecture of a Battery Management System (BMS).

Task 2: Identify and label the main components and functional blocks in the BMS.

Task 3: Explain the role of each component in the BMS.

Task 4: Create a flowchart showing how these components interact with each other.

Task 5: Simulate the data flow within the BMS using a software tool.

9. System Integration and Communication Interfaces in Battery Management Systems

LEARNING OUTCOME

• Demonstrate the ability to integrate a battery with a BMS and utilize appropriate communication protocols.

ASSESSMENT CRITERIA

- Document the steps involved in connecting a battery pack to a BMS.
- Explain the importance of various communication protocols used in BMS.
- Create and explain a wiring diagram for battery and BMS integration.
- Identify and solve potential integration challenges.
- Test and report on the functionality of the integrated system.

Task 1: Connect a battery pack to a BMS and document the steps.

Task 2: Identify the communication protocols used (e.g., CAN, SPI) and explain their importance.

Task 3: Design a wiring diagram for integrating a battery with the BMS.

Task 4: Analyze the potential challenges in system integration.

Task 5: Test the connectivity and functionality of the integrated system.

10. Safety Protocols and Regulatory Compliance for Electric Vehicle Batteries

LEARNING OUTCOME

• Analyze and implement safety measures and regulatory compliance in EV and HEV batteries.

ASSESSMENT CRITERIA

- List and explain common safety risks associated with EV and HEV batteries.
- Conduct and document a hazard analysis for a given battery system.
- Propose and implement risk mitigation strategies.
- Research and summarize regulatory compliance requirements.
- Implement and evaluate a protection mechanism in a simulated environment.

Task 1: List the common safety risks associated with EV and HEV batteries.

Task 2: Conduct a hazard analysis for a given battery system.

Task 3: Propose risk mitigation strategies for identified hazards.

Task 4: Research regulatory compliance requirements for battery safety.

Task 5: Implement a protection mechanism in a simulated environment.

11. Advanced Protection Mechanisms for Ensuring Battery Safety in EVs and HEVs

LEARNING OUTCOME

• Design and test protection mechanisms for EV and HEV batteries.

ASSESSMENT CRITERIA

- Design and document an overvoltage protection circuit.
- Implement and test reverse polarity protection.
- Develop a thermal management plan for a battery pack.
- Test and evaluate over-current protection mechanisms.
- Design and test a cooling system for heat dissipation in EV batteries.

Task 1: Design an overvoltage protection circuit for a battery system.

- Task 2: Implement reverse polarity protection in a simulated environment.
- Task 3: Create a thermal management plan for an EV battery pack.
- Task 4: Test the effectiveness of over-current protection mechanisms.

Task 5: Develop a cooling system for heat dissipation in EV batteries.

12. Diagnostic Tools and Techniques for Effective Battery Health Monitoring

LEARNING OUTCOME

• Implement and utilize diagnostic tools for battery health monitoring.

- Install and configure sensors for monitoring battery parameters.
- Use diagnostic tools to assess and document the health of a battery pack.
- Interpret diagnostic data to identify and explain potential issues.
- Develop and justify a predictive maintenance strategy based on

diagnostics.

• Implement and test fault detection and isolation techniques

Task 1: Install sensors for monitoring battery parameters (e.g., temperature, voltage).

Task 2: Use diagnostic tools to assess the health of a battery pack.

Task 3: Interpret the diagnostic data to identify potential issues.

Task 4: Develop a predictive maintenance strategy based on the diagnostics.

Task 5: Implement fault detection and isolation techniques.

13. Accurate Estimation Methods for Determining Battery State of Charge (SOC)

LEARNING OUTCOME

• Apply and evaluate different methods for estimating the State of Charge (SOC) of a battery.

ASSESSMENT CRITERIA

- Research and summarize various SOC estimation methods.
- Compare and evaluate the accuracy of different SOC estimation algorithms.
- Implement a SOC estimation algorithm in a software tool.
- Analyze and document the challenges in improving SOC estimation accuracy.
- Test and report on the SOC estimation method using a sample battery pack.

Task 1: Research various methods for estimating the SOC of a battery.

Task 2: Compare the accuracy of different SOC estimation algorithms.

- **Task 3:** Implement a SOC estimation algorithm in a software tool.
- **Task 4:** Analyze the challenges in improving SOC estimation accuracy.

Task 5: Test the SOC estimation method on a sample battery pack.

14.Predictive Models and Techniques for Battery State of Health (SOH)

Estimation

LEARNING OUTCOME

• Develop and apply predictive models for estimating the State of Health (SOH) of a battery.

ASSESSMENT CRITERIA

- Define and explain parameters influencing SOH.
- Develop a predictive model for SOH estimation.
- Implement the SOH prediction model in a simulation tool.
- Conduct and document a long-term health assessment using the model.
- Propose and justify improvements to enhance SOH prediction accuracy.

Task 1: Define the parameters that influence the SOH of a battery.

Task 2: Develop a predictive model for SOH estimation.

Task 3: Implement the SOH prediction model in a simulation tool.

Task 4: Analyze the long-term health assessment of a battery using the model.

Task 5: Propose improvements to enhance the accuracy of SOH predictions.

15. Implementing Passive and Active Cell Balancing Techniques in Battery Packs

LEARNING OUTCOME

• Understand and implement various cell balancing techniques for battery packs.

- Identify and explain causes of cell imbalance.
- Design and document a passive balancing circuit.
- Implement and test an active capacitive balancing circuit.
- Develop and test an active inductive balancing circuit.
- Compare and analyze the efficiency of different cell balancing techniques.

Task 1: Identify the causes of imbalance in battery cells.

Task 2: Design a passive balancing circuit for a battery pack.

Task 3: Implement an active capacitive balancing circuit.

Task 4: Develop an active inductive balancing circuit using a DC-DC converter.

Task 5: Compare the efficiency of different cell balancing techniques.

16. Strategies for Enhancing Battery Lifespan and Performance in EVs and HEVs

LEARNING OUTCOME

• Apply strategies to enhance the lifespan and performance of EV and HEV batteries.

ASSESSMENT CRITERIA

- Research and summarize strategies for extending battery lifespan.
- Implement and evaluate a temperature management plan.
- Develop and apply a balancing technique to maintain cell health.
- Create and test a software tool to optimize battery performance.
- Analyze and report on the impact of management techniques on battery lifespan.

Task 1: Research strategies for extending the lifespan of EV batteries.

Task 2: Implement a temperature management plan for a battery pack.

Task 3: Develop a balancing technique to maintain cell health.

Task 4: Create a software tool to optimize battery performance.

Task 5: Test the impact of different management techniques on battery lifespan.

17. Integrating Internet of Things (IoT) for Advanced Battery Management and Monitoring

LEARNING OUTCOME

• Implement IoT solutions for enhanced battery management and monitoring.

ASSESSMENT CRITERIA

- Design and document an IoT-enabled battery monitoring system.
- Implement remote monitoring capabilities using IoT devices.
- Set up and test a network for data acquisition.
- Utilize ARM microcontrollers for managing battery data.
- Analyze and report the benefits of IoT integration in battery management.

Task 1: Design an IoT-enabled battery monitoring system.

Task 2: Implement remote monitoring capabilities using IoT devices.

Task 3: Set up a network for data acquisition from the battery system.

Task 4: Use ARM microcontrollers to manage and process battery data.

Task 5: Analyse the benefits of IoT integration for battery management.

18. Simulation and Performance Analysis of Battery Packs Under Various Conditions

LEARNING OUTCOME

• Simulate and analyze the performance of battery packs under various conditions.

ASSESSMENT CRITERIA

- Write and explain equations for vehicle dynamics involving battery packs.
- Calculate and document the range of an EV using a given battery pack.
- Simulate constant power and voltage scenarios.
- Create and analyze a model to simulate a battery pack.
- Report on the performance improvements based on simulation results.

Task 1: Write equations for vehicle dynamics involving battery packs.

Task 2: Calculate the range of an EV using a specific battery pack.

Task 3: Simulate constant power and voltage scenarios for the battery pack.

Task 4: Create a model to simulate the battery pack's performance.

Task 5: Analyze and report on the performance improvements based on the simulation.

19. Sustainable Practices and Innovations in Battery Design and Management

LEARNING OUTCOME

• Identify and implement sustainable practices in battery design and management.

ASSESSMENT CRITERIA

- Research and propose eco-friendly battery design options.
- Develop and document energy-efficient manufacturing processes.
- Create a plan for recycling and end-of-life management.
- Design and evaluate a smart charging infrastructure.
- Develop and present a consumer awareness campaign on sustainable practices.

Task 1: Research eco-friendly battery design options.

Task 2: Develop energy-efficient manufacturing processes for batteries.

Task 3: Create a plan for recycling and end-of-life management of batteries.

Task 4: Design a smart charging infrastructure for EV batteries.

Task 5: Present a consumer awareness campaign on sustainable battery practices.

20. Emerging Trends and Future Prospects in Battery Management Technologies

LEARNING OUTCOME

• Analyze and discuss emerging trends and future prospects in battery management systems.

- Identify and explain recent advancements in battery management systems.
- Research and document the latest trends in EV and HEV battery technology.

- Analyze and present case studies of innovative battery management solutions.
- Discuss and propose solutions to potential integration challenges.
- Predict and justify future prospects in battery management technology.

Task 1: Identify recent advancements in battery management systems.

- Task 2: Research the latest trends in EV and HEV battery technology.
- Task 3: Analyze case studies of innovative battery management solutions.

Task 4: Discuss potential integration challenges and propose solutions.

Task 5: Predict future prospects in battery management technology.

21. Evaluating and Implementing Communication Protocols in Battery Management Systems

LEARNING OUTCOME

• Implement and evaluate communication protocols in battery management systems.

- Research and summarize common communication protocols used in BMS.
- Implement a CAN communication interface for a BMS.
- Design and test a SPI-based communication system.
- Evaluate the reliability and speed of different communication protocols.
- Develop and present a protocol selection guide for various BMS applications.
- **Task 1:** Research common communication protocols used in BMS.
- Task 2: Implement a CAN communication interface in a BMS.
- Task 3: Design a SPI-based communication system for a BMS.
- Task 4: Test the reliability and speed of different communication protocols.
- **Task 5:** Develop a protocol selection guide for BMS applications.

22. Utilizing Diagnostic Tools for Comprehensive Battery Health Assessment

LEARNING OUTCOME

• Utilize diagnostic tools to assess and improve battery health.

ASSESSMENT CRITERIA

- List and explain the features of various diagnostic tools.
- Conduct a comparative analysis of different diagnostic tools.
- Implement a diagnostic tool in a battery management system.
- Develop and apply a methodology for interpreting diagnostic data.
- Propose and justify improvements to enhance diagnostic tool accuracy.

Task 1: List the features of various diagnostic tools for battery health.

Task 2: Compare different diagnostic tools based on their features.

Task 3: Implement a diagnostic tool in a BMS.

Task 4: Develop a methodology for interpreting diagnostic data.

Task 5: Propose improvements to enhance the accuracy of diagnostic tools.

23. Developing Predictive Maintenance Strategies for Electric Vehicle Batteries

LEARNING OUTCOME

• Develop and implement predictive maintenance strategies for EV and HEV batteries.

ASSESSMENT CRITERIA

- Define key performance indicators for battery health monitoring.
- Develop a predictive maintenance model for EV batteries.
- Implement the model in a simulation tool.
- Test and document the model's performance on a sample battery pack.
- Create and justify a maintenance schedule based on predictive analysis.

Task 1: Define key performance indicators for battery health monitoring.

Task 2: Develop a predictive maintenance model for EV batteries.

Task 3: Implement the predictive maintenance model in a simulation tool.

Task 4: Test the model's performance on a sample battery pack.

Task 5: Create a maintenance schedule based on predictive analysis.

24. Temperature Sensing and Control Mechanisms for Optimal Battery Performance

LEARNING OUTCOME

• Implement and evaluate temperature sensing and control mechanisms for batteries.

ASSESSMENT CRITERIA

- Research and summarize different temperature sensing techniques.
- Implement a temperature sensing system in a battery pack.
- Develop and test a control algorithm for maintaining optimal battery temperature.
- Evaluate the effectiveness of the temperature control system.
- Propose and justify improvements to enhance thermal management.

Task 1: Research different temperature sensing techniques for batteries.

Task 2: Implement a temperature sensing system in a battery pack.

Task 3: Develop a control algorithm for maintaining optimal battery temperature.

Task 4: Test the effectiveness of the temperature control system.

Task 5: Propose improvements for better thermal management in battery systems.

25. Fault Detection and Isolation Techniques in Battery Management Systems

LEARNING OUTCOME

• Develop and apply fault detection and isolation techniques in battery management.

ASSESSMENT CRITERIA

• Identify and explain common faults in EV and HEV batteries.

- Develop a fault detection algorithm for a battery management system.
- Implement and test the fault detection algorithm in a simulation tool.
- Analyze and report on the algorithm's performance.
- Propose and justify strategies for effective fault isolation and recovery.

Task 1: Identify common faults in EV and HEV batteries.

Task 2: Develop a fault detection algorithm for a BMS.

- **Task 3:** Implement the fault detection algorithm in a simulation tool.
- Task 4: Test and analyze the performance of the fault detection algorithm.

Task 5: Propose strategies for fault isolation and recovery in battery systems.

26.Designing and Implementing Smart Charging Infrastructure for EV Batteries

LEARNING OUTCOME

• Design and implement smart charging infrastructure for EV and HEV batteries.

ASSESSMENT CRITERIA

- Research and summarize smart charging technologies.
- Design and document a smart charging station.
- Implement and evaluate a smart charging algorithm.
- Analyze the impact of smart charging on battery lifespan and performance.
- Develop and test a user interface for the smart charging station.

Task 1: Research smart charging technologies for EV and HEV batteries.

Task 2: Design a smart charging station for EV batteries.

Task 3: Implement a smart charging algorithm.

Task 4: Analyze the impact of smart charging on battery lifespan and performance.

Task 5: Develop a user interface for the smart charging station