ABOUT THE COURSE

COURSE NAME:	DRONE PILOT TECHNIQUES
TOTAL DURATION:	45 Hrs
MODE OF DELIVERY	PHYSICAL CLASSROOM TRAINING AT
	RESPECTIVE COLLEGES
TRAINER TO	1:50
STUDENT RATIO:	
TOTAL MARKS:	75

	TABLE 1	
OVERALL COURSE OBJECTIVE:	The course will up-skill the candidates in the field of drone technology, the participants will obtain knowledge related to the application of drones in various field. The candidates will gain practical knowledge in building of a complete drone from scratch including the functioning of all the components. This will help the candidates of understand the technical aspects of drone building. In addition to that the candidates will be given with pilot training of drone in simulator and in field for a certain hour to ensure the candidates are trained in operating the drone.	
LEARNING OUTCOME:	 Exploring latest drone technology and its applications. Demonstrate basic operations of drone Simulation training to improvise the piloting skills. Explore the Rules and regulation of drone according to DGCA is thought in the training. Assemble a complete drone including all the software programming and hardware connections with testing. 	

Т	TABLE 2: MODULE-WISE COURSE CONTENT AND OUTCOME			
SL. NO	MODULE NAME	MODULE CONTENT	MODULE LEARNING OUTCOME	DURATI ON (HRS)
2	Aerodynam ic concept of drone flying	Detailed discussion on technical aspects, Thrust	Complete calculations behind the designing of drone. design an indigenous	4 Hours

		and drag calculation of drone. Design of drone frame and cantilever analysis of drone arms and maximum load factor calculation. Life cycle of drone frame calculation, Maximum operating altitude calculation, thrust to weight ratio calculation, Centre of Gravity calculation, Maximum take- off weight calculation, Motor current draw calculation and obtaining the maximum flight time of the drone	drone. The improvising of drone design techniques will be discussed.	
3	Manufacturi ng of drone and material selection for drone. Propulsion system of drone	Introduction to manufacturing of drone manufacturing method and materials utilized. Discussion of rapid prototyping method of manufacturing, Injection Mouldina	The candidates can decide the efficient materials for different parts of the drone. Identify the drone manufacturing method to minimize the cost of manufacturing. Suitable power system for the drone.	3 Hours

	Composite moulding method, Autoclave Utilized composite manufacturing. Components which can be manufactured in different method and usage of components. Kevlar, Carbon composites, Plastic , nylon materials usages in drone. Discussion of Electric propulsion system, gasoline		
	and hybrid operating system		
4 Concept of Autopilot in drone and sensors available in them	SystemDiscussion of concept of Autopilot and its function, Sensors available in autopilot.Calibration of sensor and different purposes of each sensor.Global position	Program the drone's autopilot with different configurations and for different use case. Identify the suitable protocol for GPS system based on the location of operation.	5 Hours

		and its function, Protocol for GPS system, Different types of GPS system		
5	Introductio n to rubber band powered plane and assembly	Introduction to rubber band powered plane to understand the working principal of Fixed wing drones. Assembly of the rubber band plane from the kit provided by the organisation. Flying test of all rubber band powered plane and categorising the most efficient design.	Practically assemble a rubber band plane and test by themselves and improvise the design. Candidates can get through the complete concept of fixed wing drone flying.	8 Hours
6	Drone Simulator Training	Drone piloting simulator training will be provided with the assistance of staffs. Drone manoeuvring will be practiced i.e Pitch, Roll, Yaw and Throttle. Basic stick control method will be provided to control the	Practice the drone piloting in software so that they can operate the drone without any damages or crashing the drone on field.	6 hours

		drone.		
7	Assembly	The students will	Build their own drone	15 Hours
	of	be provided with	in the design they	
	QUADCOPT	all the	prefer.	
	ER	components		
	and flying	needed to	On field piloting	
	test of it.		practice is provided.	
		components will	Control of GCS to	
		be tested by the	operate the drone in	
		students.	autonomous mode is	
			learnt.	
		After testing of		
		components, the		
		assembly of		
		quadcopter will		
		De discussed		
		like soldering		
		thermal paste.		
		3MM tape etc.		
		•		
		The connection		
		for the		
		components will		
		be explained		
		can perform the		
		connection.		
		Programming of		
		drone using		
		Ground Control		
		Software (GCS)		
		Flight test of the		
		quadcopter will		
		be tested by the		
		staffs for		
		ensuring the		
		flying capability		
		or arone.		
		The after the		
		complete testing		

		of drone candidates can Practice flying of drone with the help of staffs assisting them.		
		Basic manuvering of drone will be practiced.		
		The operation of drone in autonomous mode will be discussion with the usage of GCS.		
8	Conclusion	The topics discussion and training session will be concluded by the staff and way forward of drones will be discussed.	The way forward of drone industry will be discussed.	1 Hour

TABLE 3: OVERALL COURSE LEARNING OUTCOME ASSESSMENT CRITERIA AND USECASES			
LEARNING OUTCOME	ASSESSMENT CRITERIA	USECASES	
Participants can understand complete working of drone,	Segregation of drone category for different applications.	Use Case 1: Segregation of drone category for different applications.	
Advantages of the drone technology in different sectors.	Selection of different payloads for different applications.	Scenario: Different categories of drone will be produced and	
Participants gain knowledge about flight dynamics of drone.	Calculation of thrust to weight ratio Design of optimised drone	participants have to match the application and drone based on application.	
	frame	Task: Viva examination will	

	be conducted for the participants where they will be asked to match the applications with drone.
	Use case 2: Selection of different payloads for different applications.
	Scenario: The payloads like thermal camera, Lidar, Multi spectral camera, Hyper spectral camera will be displayed and applications like agricultural growth identification, Elevation estimation, Mapping will be displayed and participants has to match the application with the payloads. Task: Viva examination related to payloads and application can be conducted.
	Use Case 3: Calculation of thrust to weight ratio
	Scenario : The participants will be given an numerical problem to solve and they can apply the formula and solve the problem and identify the optimal thrust required for the drone

		in different altitudes.
		Task: A series of numerical and concept based test will be conducted for the participants and solve the question paper.
		Use Case 4: Design of optimised drone frame. Scenario: The participants have to pictorially represent the creative design of drone with an improved efficiency in thrust production and minimal drag production.
		Task: The participants have to draw or design using CAD to represent the drone frame design and its improved performance changes made by the design.
Participants can gain knowledge in DGCA rules and regulations and operate the drone.	Segregation of different zones of airspace DGCA rules for drone altitude in INDIA	Use case 1: Segregation of different zones of airspace. Scenario: The participants will
Participants gain knowledge about type certification and Remote pilot certificate.	Type certification rules for drone Categories or remote pilot certificate and validation in INDIA	be asked to define the different fly zone in India and conditions of, Random locations zone identification will be asked. Task: The participants have

to lo yello be io sky Use DGC altitu	cate the red, ow and red zone ill dentified in Digital platform. case 2: CA rules for drone ude in INDIA.
Scer The be q the regu to D Tas A se rules be c part the o	nario: participants will uestioned about rules and lation according GCA in India. k: ries of DGCA s-based test will onducted for the icipants and solve question paper.
Use Type rules	Case 3: e certification s for drone
Scen The type dron desi will the Tas A se Type base conc part the o	nario: rules regarding certification of he with basic gn requirements be questioned to students. k: ries of DGCA e certification- ed test will be lucted for the icipants and solve question paper.
Use	Case 4:
pilot valio	certificate and lation in INDIA.

Participants will gain knowledge of technical parts of drone and in-depth knowledge of components in drone. Participants enhance knowledge in Autopilot configuration and software programming of Autopilot.	Components selection for different configuration of drone to produce different thrust ratios. Wiring diagram of drone components representation. Function of autopilot in drone.	question paper. Use case 1: Components selection for different configuration of drone to produce different thrust ratios. Scenario: Participants will provide with different components and with different configurations and they must segregate the components according to the
		possible combination. Task: Participants can attend practical test on selection of components for drone to maximise the performance and reduce the current consumption. Use Case 2: Wiring diagram of

		drone components
		representation
		Sconario
		Darticipante must
		drow flow chart for
		components in arone
		and map the signal
		flow and current flow
		of the drone.
		Task:
		Participants can
		attend practical test
		on components
		mapping and
		assembly of
		components.
		Use Case 3:
		Function of autopilot
		in drone.
		Scenario:
		The autopilot will be
		provided with the
		around control station
		and complete setup
		has to be performed
		by the participants
		Dractical test will be
		conducted for
		conducted for
		programming the
		autopilot and final
		ready to fly condition
		of the drone will be
Participants will	Aerodynamic concept	Use Case 1:
gain knowledge on	behind flying of rubber	Aerodynamic concept
Assembly of Fixed	band powered plane.	behind flying of
wing (Rubber Band		rubber band powered
Powered plane).	Flying principal behind	plane.
	quadcopter drone and lift	
Participants will trv	production due to	Scenario:
Assembly of	propeller rotation.	The rubber band
Ouadcopter and		powered plane's wind
calibration of	Identification of heading	design will be
sensors.	of drone while the drone	provided, and the

Participants can identify the Colour coding of arms in drone while flying the drone.	is flying and perform emergency recovery.	angle must be varied and stall angle has to be identified. Task: The calculation for drag calculation has to be identified and then stall angle has to be determined.
		Use Case 2: Flying principal behind quadcopter drone and lift production due to propeller rotation.
		Scenario: The simulation and mathematical calculation software's will be provided, and the participants has to simulate the stall angle of the plane.
		Task: The calculation of stall angle must be calculated with the design of wing air foil design and improve the aspect ratio.
		Use Case 3: Identification of heading of drone while the drone is flying and perform emergency recovery. Scenario: Testing equipment's will with motors to identify the thrust with various propeller will be provided.

		Task: Participants has to test the motors and thrust production and identify the thrust needed for the drone to operate. Use Case 3: Identification of heading of drone while the drone is
		flying and perform emergency recovery.
		Scenario: The drone will be flying, and the heading of the drone will be changed by the operator then the participant has to correct the heading based on the colour coding and direction of the drone.
		Task: The participants has to instruct the operator to give input commands and then based on that the direction of the drone has to be identified by them.
Flying practice of drone and understanding about PID tunning of drone.	Flying of drone piloting in Drone simulation software. Flying practice test of	Use case 1: Flying of drone piloting in Drone simulation software.
Participants can free fly for a certain amount of time in a closed	drone in different shape formation. Realtime PID tuning of drone to improvise	Scenario: The drone simulator software and the transmitter for it will be given

environment.	performance.	and tested for practicing of
	Yaw correction estimation	piloting.
	flying practice.	Task: Practical test of drone piloting in simulator platform.
		Use Case 2: Flying practice test of drone in different shape formation.
		Scenario: The drone will be provided to the participants and the 8 formation, circular inclination, Circular declination etc will be tested.
		Task: The practical test on drone flying skill will be tested.
		Use case 3: Realtime PID tuning of drone to improvise performance.
		Scenario: The drone PID tuning decides the behaviour of drone, So the drone will be flying in the air, and the participants has to change the value of all parameters to improve the capability of drone.
		Task: The practical test of

	software usable capability of participants if tested. Use Case 4: Yaw correction estimation in GPS denied condition
	Scenario: The GPS system in drone will be removed and the drone will be set to manual mode so the participants has to learn flying of drone in case of any sensor failure in the drone.
	Task: Practical test of the emergency recovery capability of drone by the participants is tested

TABLE 4: LIST OF FINAL PROJECTS (20 PROJECTS THAT	
COMP	REHENSIVELY COVER ALL THE LEARNING OUTCOME)
SL.NO	FINAL PROJECT
1	Design and Fabrication of drone frame assembly
2	Design and simulation of maximum load withstand capability
	of drone
3	Fabrication of variable pitch propeller
4	Design and fabrication of BLDC motor
5	Fabrication of VTOL drone
6	Simulation and numerical Calculation of propeller balance
	point.
7	Manufacturing of drone using Rapid prototyping method.
8	Manufacturing of mapping drone
9	Wind mill inspection using drone
10	Agriculture spraying using drone
11	Logistics delivery drone
12	Man carrying drone (Drone Taxi)
13	Surveillance drone
14	Firefighting drone

15	Military combat mission drone
16	3D scanning drone
17	Anti drone system
18	Test bench for calculation of Centre of Gravity of drone
19	Test bench for motor thrust calculation and vibration
20	Improvision of Power system using hybrid technology in
	drone