
ABOUT THE COURSE:

TOTAL DURATION: 45 HRS

MODE OF DELIVERY Virtual Instructor led by Industry Experts +

Physical Session conducted by FDP faculty

TRAINER TO STUDENT

RATIO:

1:50

TOTAL MARKS: 75

TABLE 1

OVERALL COURSE

OBJECTIVE:

• Analyze Web Development Architecture

Critically examine how frontend and

backend systems communicate within the

client-server model. Deconstruct the roles

and responsibilities of each layer in a full-

stack environment.

• Design and Construct Structured Web

Pages Using HTML & CSS

Apply advanced HTML and CSS techniques

to create semantically structured and

visually cohesive web interfaces,

evaluating design decisions for optimal

user experience.

• Develop and Evaluate JavaScript Solutions

Create dynamic functionality by

implementing complex JavaScript logic,

including asynchronous programming.

Assess code performance and refactor for

maintainability and efficiency.

• Design and Optimize Responsive Interfaces

Create responsive layouts adaptable to

various devices and screen sizes. Evaluate

and refine designs to ensure usability and

performance across platforms.

• Build and Refine Interactive UIs with

React.js

Construct modular, component-based

applications using React.js. Analyze the

flow of data through props and state to

ensure scalability and responsiveness.

• Implement and Evaluate Web Accessibility

Practices

Design interfaces that adhere to

accessibility standards. Critically assess

user interactions and modify code to

improve inclusivity and compliance with

ally guidelines.

• Integrate and Test Full Stack Functionality

Design and implement seamless

integration between frontend and backend

components. Evaluate data flow and

system interactions to ensure functional,

reliable application behaviour.

LEARNING OUTCOME: Design and Develop Responsive User Interfaces

Using HTML/CSS

Apply and evaluate foundational and advanced

HTML/CSS techniques—including Flexbox and

Grid—to construct structured, accessible, and

responsive web layouts. Analyze and manipulate

the Document Object Model (DOM) to enhance

user interaction and interface behavior.

Create and Optimize Interactive Functionality

Using JavaScript

Construct dynamic and event-driven web

applications by applying core JavaScript concepts,

including ES6+ features and asynchronous

programming patterns. Analyze user interactions

to implement responsive behavior, and evaluate

code efficiency in real-world scenarios.

Build, Analyze, and Enhance Modular UI

Components in React

Develop reusable and maintainable components

using JSX. Evaluate and implement state

management strategies, including React hooks

and lifecycle methods, to optimize performance

and maintain clarity in data flow through props and

conditional rendering. Create responsive, event-

driven form handling and enhance user experience

through structured component architecture.

TABLE 2: MODULE-WISE COURSE CONTENT AND OUTCOME

SL.N
O

MODULE

NAME

MODULE CONTENT MODULE
LEARNING

OUTCOME

DURATION

(HRS)

1

 Introduction
to Frontend

Development
and Basic
Web

Technologies

Intro to Web

Development
What is Frontend?

Roles &
Responsibility of
Frontend Developer

Basics Web
Technologies

Introduction to
HTML
Basic HTML

structure
Introduction to CSS

Basic CSS syntax
Basic elements,
DOM-create/delete

elements.
Selectors.

Advanced CSS
techniques like
flexbox and grid

Best practices for
HTML and CSS

development

Analyze the
Core Concepts

of Web
Development

Architecture
Evaluate the
roles and

interactions
between

frontend and
backend
systems within

web
development.

Differentiate
their
functionalities

by
deconstructing

real-world
examples of
client-server

communication
Apply and

Integrate
Essential Web
Technologies

Select, apply,
and justify the

use of core web
technologies in
frontend

development
scenarios.

Synthesize
knowledge of
these

technologies to
construct basic

3

yet functional
user interfaces.
Design and

Structure Web
Pages Using

Semantic HTML
Create well-
structured web

pages by
implementing

HTML elements
purposefully.
Analyze

content
hierarchy and

utilize
appropriate
tags such as

headings, links,
lists, and

images to
support
usability and

accessibility.
Construct and

Refine Web
Layouts Using
CSS

Implement CSS
selectors

strategically to
apply visual
styles. Analyze

and construct
responsive

layouts using
Flexbox and

Grid systems.
Evaluate layout
designs for

adaptability
across different

devices and
screen sizes.
Evaluate and

Apply Best
Practices in

Code Quality
Assess and
apply industry

standards for

writing clean,
maintainable,
and semantic

HTML and CSS.
Continuously

refine code for
readability,
scalability, and

performance.

2

JavaScript &
ES6 Essentials

Introduction to
Javascript

Variables,
datatypes, and

operators
Control flow
statements (if-else,

for, while, switch)
Introduction to ES6

(let, const,
template strings)

Arrow function,
Spread operator,
destructing,Callbac

k, Promise.
JavaScript

fundamentals:
functions, objects,
arrays

Manipulating the
DOM with

JavaScript
Handling events
and user

interactions with
JavaScript

Design and
Implement
Dynamic Logic
Using
JavaScript
Fundamentals
Construct
decision-based
programs by
analyzing data
types, control
flow logic (e.g.,
if-else, switch,
loops), and
variable scope
using let and
const. Evaluate
different
approaches to
program
structure to
ensure clarity
and efficiency.
Develop
Modular and
Maintainable
Code Using
Advanced
JavaScript
Features
Create concise
functions using
arrow syntax.
Apply
destructuring
and the spread
operator to
streamline
array and
object
manipulation.
Evaluate and
refactor code
for readability
and reusability
using modern
ES6+ features
such as

4

template
literals and
function
closures.
Apply
Functional
Programming
Techniques for
Data Handling
Use higher-
order functions
like map, filter,
and reduce to
transform and
analyze
datasets
effectively.
Create reusable
utility functions
that simplify
complex data
operations.
Create and
Manage
Asynchronous
Workflows
Construct and
evaluate
asynchronous
JavaScript
operations
using callbacks
and Promises.
Design clean,
responsive
interactions
such as data
fetching and
delayed
execution
through proper
use of
asynchronous
control
structures.
Construct and
Modify the
DOM
Programmatical
ly
Develop
interactive user
experiences by
dynamically
selecting,
creating, and
removing DOM
elements.
Apply event
handling

techniques to
manage user
input and
interaction,
including the
use of event
propagation
and delegation
for complex UI
behavior.
Evaluate User
Interaction
Flow and
Optimize DOM
Manipulation
Assess how
user actions
affect the DOM
and implement
efficient
patterns to
handle events
and updates.
Optimize
performance by
minimizing
reflows and
maximizing
code efficiency
in response-
driven
interfaces.

3

React

Fundamentals

Introduction to
React - Basics,
component based

Architecture, virtual
DOM

Setting up the
development
environment - Node

& npm installation,
code editor

installation &
configuartion,
Development

environment
Create React App

(using npm CLI) -
Understand Project
structure and file

organization
Components:

Functional and class
components.

Explain the
basics of React,
including

component-
based

architecture
and the virtual
DOM.

Describe how
React differs

from other
JavaScript
frameworks.

Set Up a React
Development

Environment:
Install and
configure

Node.js and
npm.

Set up a code
editor (e.g., VS

Code) with

6

Props: Passing data
to components.
State: Managing

state within
components.

Lifecycle Methods:
Component lifecycle
in class

components
(componentDidMou

nt,
componentDidUpda
te, etc.).

Event Handling:
Handling user

inputs and events.
Conditional
Rendering:

Rendering elements
based on

conditions.
Lists and Keys:
Rendering lists and

understanding the
importance of keys.

Forms: Controlled
vs. uncontrolled
components.

necessary
extensions and
configurations

for React
development.

Create and
Navigate a
React Project:

Use Create
React App to

initialize a new
React project.
Understand the

project
structure and

organize files
appropriately
within a React

application.
Work with

React
Components:
Create both

functional and
class

components.
Explain the
differences

between
functional and

class
components
and when to

use each.
Pass data

between
components

using props.
Understand the
concept of

props and how
to use them to

make
components
reusable and

dynamic.
Use the

useState hook
to manage
state in

functional

components.
Manage state
within class

components
and understand

the differences
between state
and props.

Use lifecycle
methods in

class
components.
Implement

event handling
in React to

respond to user
inputs such as
clicks, form

submissions,
and keyboard

events.
Understand the
concept of

synthetic
events in

React.
Render
elements

conditionally
based on

component
state or props.
Use logical

operators and
ternary

expressions to
control what is

rendered.
Render lists of
data efficiently

using the map
function.

Understand the
importance of
keys in React

for maintaining
component

identity and
optimizing
rendering

performance.

Handle form
inputs using
controlled

components to
manage form

state explicitly.
Understand the
difference

between
controlled and

uncontrolled
components
and when to

use each.

4

React Hooks &

Routing

Hooks
useState
useEffect

useRef
Custom Hooks

React Router
Setting up React

Router
Route and Link
components

Nested Routes
Route parameters

and query strings
Programmatic
navigation

Design and
Manage State
Logic Using

React Hooks
Construct

dynamic and
stateful user

interfaces by
implementing
useState and

evaluating
different

strategies for
managing
component

state. Analyze
component

behavior with
useEffect to
coordinate side

effects such as
data fetching

and
subscriptions,
while ensuring

proper
resource

cleanup.
Develop
Efficient

Component
Interactions

with Advanced
Hooks
Apply useRef to

interact directly
with DOM

4

elements and
preserve
mutable values

across renders.
Create and

abstract
reusable logic
through custom

hooks to
enhance

maintainability
and
consistency

across
components.

Architect and
Evaluate
Routing

Strategies in
React

Applications
Configure
client-side

routing with
React Router to

enable
seamless
navigation.

Analyze and
implement

various route
structures
using <Route>

and <Link>
components for

intuitive user
flows.

Implement and
Organize
Complex

Routing
Structures

Design nested
and dynamic
routes to

handle multi-
level

navigation.
Evaluate the
use of route

parameters

and query
strings to pass
and retrieve

dynamic data,
ensuring

flexibility in
component
rendering and

user navigation
paths.

Control
Navigation
Flow

Programmatical
ly

Apply
programmatic
navigation

techniques
using React

Router’s
navigation
utilities (e.g.,

useNavigate or
history object)

to direct user
flow based on
logic,

conditions, or
application

state changes.

5 Integrating
APIs and

Backend
Communication

Fetching data with
Fetch API and Axios

CRUD operations
Handling API

responses and
errors
Using Async/Await

in React
Authentication and

Authorization

Fetch API: Use
the Fetch API

to make HTTP
requests.

Axios: Set up
and use Axios
for more

streamlined
and advanced

HTTP requests.
Perform CRUD
Operations

Implement
Create, Read,

Update, and
Delete (CRUD)
operations in a

React
application.

3

Integrate CRUD
operations with
RESTful APIs to

interact with
backend

services.
Handle API
Responses and

Errors
Process and

utilize data
from API
responses to

update the UI.
Implement

error handling
strategies for
HTTP requests

to manage
errors and

provide
feedback to
users.

Use
Async/Await in

React
Understand
and apply

async and
await syntax

for managing
asynchronous
operations in

React.
Implement

Authentication
and

Authorization
Authentication:
Set up user

authentication
in a React

application,
including login
and logout

functionality.
Authorization:

Implement
authorization to
restrict access

to certain parts

of the
application
based on user

roles or
permissions.

TABLE 3: OVERALL COURSE LEARNING OUTCOME ASSESSMENT CRITERIA AND

USECASES

LEARNING OUTCOME ASSESSMENT CRITERIA USE-CASES

Analyze and Construct

Responsive Frontend

Interfaces using HTML,

CSS, and DOM

Manipulation

Frontend and Backend:

Assessing the ability to

differentiate between

frontend and backend

development, and

describe the

responsibilities associated

with each role.

Proficiency in HTML/CSS

and DOM Manipulation:

Evaluating proficiency in

HTML/CSS fundamentals,

including

creating/deleting DOM

elements, and applying

advanced CSS techniques

like flexbox and grid

layouts.

Use Case 1: Personal Blog

Website.

Scenario: Sanjana is

passionate about cooking

and wants to share her

recipes, cooking tips, and

culinary adventures with

the world. She envisions a

personal blog website

where she can showcase

her content in an

organized and visually

appealing manner. She

also aims to enhance her

digital presence through

the website.

Task: Design the website

layout using HTML and

CSS to ensure

responsiveness across

various devices and

screen sizes. Apply

responsive design

principles such as fluid

grids, flexible images, and

media queries to adapt

the layout dynamically.

Create a visually

appealing design by

incorporating custom

fonts, colors, and

graphics that reflect

Emily's culinary theme.

Utilize CSS styling

techniques to enhance the

aesthetics of the website,

including typography,

spacing, and transitions.

Use Case 2: Online

Portfolio for a Freelance

Graphic Designer.

Scenario: Gopal is a

freelance graphic designer

looking to establish a

strong online presence

and attract potential

clients. He wants to

showcase his portfolio of

design projects, including

logos, branding materials,

and website designs, in a

professional and visually

compelling manner.

Task: Develop a

responsive online portfolio

website using HTML and

CSS to effectively

showcase Gopal's design

work across various

devices and screen sizes.

Implement a clean and

modern layout that

emphasizes visual

elements such as images,

graphics, and interactive

design components.

Utilize CSS techniques to

create polished

animations, transitions,

and hover effects that

enhance the user

experience and engage

visitors.

Design and Evaluate

Interactive JavaScript

Logic and DOM

Operations

Demonstrate proficiency

in acquiring essential

knowledge for ES6 like

arrow functions, spread

operator, rest

operator,etc.

Acquire knowledge of

promises which will help

in understanding

asynchronous

programming. And also

get to know about

Document Object Model

(DOM).

Use Case 1: Dynamic

Event Booking Website.

Scenario: Shyam is an

event organizer planning

a series of workshops and

conferences. He wants to

create an interactive

website where attendees

can view upcoming

events, register for

tickets, and receive event

updates in real-time. He

aims to build a user-

friendly platform that

dynamically updates

event information,

handles user

registrations, and

provides a seamless

booking experience for

attendees.

Task: Develop a dynamic

event booking website

using JavaScript DOM

manipulation to enhance

interactivity and

functionality. Design a

responsive and visually

appealing layout that

displays upcoming events,

event details, and

registration forms. Utilize

JavaScript to manipulate

the DOM elements

dynamically, updating

event information and

user interface elements in

response to user actions.

Utilize DOM manipulation

techniques to dynamically

add, remove, or modify

HTML elements based on

user input or server

responses. Integrate form

validation using

JavaScript to ensure that

user input is accurate and

complete before

submitting registration

details. Implement

asynchronous requests

using AJAX to

communicate with the

server, fetch event data,

and handle registration

submissions without

reloading the entire page.

Use Case 2: Interactive

Task Management

Application.

Scenario: Jessica is a

project manager

overseeing multiple teams

and tasks. She needs a

centralized platform to

manage project

workflows, assign tasks to

team members, and track

progress in real-time.

Jessica envisions an

interactive task

management application

that allows users to

create tasks, set

deadlines, assign

priorities, and collaborate

with team members

seamlessly.

Task: Develop an

interactive task

management application

using JavaScript DOM

manipulation to facilitate

efficient task tracking and

collaboration among team

members. Design a

responsive and intuitive

user interface that

enables users to create,

edit, and delete tasks

dynamically. Utilize

JavaScript to manipulate

the DOM elements in real-

time, updating task lists,

statuses, and details

based on user interactions

and server responses.

Develop and Optimize

Modular Components with

React's Architecture and

Lifecycle

Demonstration of React

Concepts: Assess the

implementation of JSX

syntax, component

creation, data handling

with props, state

management, form

usage, and understanding

of the React lifecycle.

Implement event handlers

for common events (e.g.,

onClick, onChange) in

React components and

create forms that capture

user input and update the

state accordingly. Also

implement conditional

rendering.

Use Case 1: Random

Quote Generator

Scenario: Emma, an

enthusiast of motivational

quotes, discovers a

Random Quote Display

project online but finds its

lack of interactive

features frustrating.

Despite her interest, she's

unable to easily refresh

the page or generate new

quotes, hindering her

browsing experience.

Emma desires seamless

interaction, envisioning

clickable buttons or swipe

gestures for effortless

navigation. Feeling

dissatisfied, she considers

providing feedback and

ultimately seeks

alternatives that prioritize

user engagement.

Task: Develop the

pagination functionality to

display a limited number

of users per page,

ensuring optimal

performance and user

experience. Develop

functionality to enable

users to refresh the page

or generate a new

random quote with ease.

Create buttons or controls

within the application

interface to trigger the

actions of refreshing the

page or fetching a new

random quote from the

external API. Improve the

integration with the

external API to fetch

random quotes efficiently

and reliably. Implement

error handling

mechanisms to gracefully

handle API request

failures and provide

feedback to users.

Enhance the visual

presentation of quotes

within the application

interface to ensure clear

and appealing display to

users. Utilize Bootstrap or

similar styling frameworks

to optimize the layout and

design for improved

readability and aesthetics.

Use Case 2: Digital timer

Scenario: Imagine you

are tasked with

developing a productivity

application that

incorporates the

Pomodoro Technique—a

time management

method that uses a timer

to break work into

intervals, traditionally 25

minutes in length,

separated by short

breaks. The application

should allow users to

track their work sessions,

take breaks, and

customize timer intervals.

Task: Implement a digital

timer component.

Add functionality to start,

pause, and reset the

timer.

Enable users to set

custom time limits for the

timer.

Display the timer in a

visually appealing format.

Ensure accurate tracking

of time intervals.

Construct Advanced

Functional Interfaces

using React Hooks and

Client-Side Routing

Proficiency with React

Hooks: Evaluate the

adeptness in utilizing

React hooks,

encompassing both built-

in and custom hooks, for

effective state

management and

performance optimization

in React applications.

Set up React Router

correctly, define routes

using Route and Link

components, implement

nested routes, handle

route parameters and

query strings, and

perform programmatic

navigation. Practical

projects and coding

exercises will evaluate

their understanding and

application of these

concepts, ensuring they

can build dynamic,

navigable React

applications.

Use Case 1: Tic Tac Toe

Game

Scenario: Imagine

yourself sitting across

from a friend, each poised

with anticipation as you

gaze upon the grid before

you. The Tic Tac Toe

board, a canvas of

possibilities, awaits your

strategic moves. With

each turn, the tension

mounts as you strive to

outmaneuver your

opponent, placing Xs and

Os in a bid to claim

victory. The challenge is

simple yet exhilarating:

three in a row,

horizontally, vertically, or

diagonally, and the glory

is yours. Will you emerge

triumphant, or will your

adversary outwit you in

this timeless battle of wit

and tactics? It's time to

find out as you embark on

a thrilling journey into the

world of Tic Tac Toe.

Task: Create App

Function Component:

Define the main functional

component named App.

useState Hooks: Utilize

useState Hook to manage

state for board,

currentPlayer, winner,

and confetti.

Handle Cell Click

Function: Implement a

function handleCellClick to

handle cell clicks on the

board and update the

game state accordingly.

Check Winner Function:

Define a function

checkWinner to determine

if there's a winning player

based on the current

board state.

Reset Game Function:

Create a handleReset

function to reset the

game state to its initial

values.

Render Cell Function:

Implement a renderCell

function to render

individual cells on the

game board.

Render Board Function:

Create a renderBoard

function to render the

entire Tic-Tac-Toe board

using the renderCell

function.

Use Case 2: User

Dashboard

Scenario: During Sarah's

interaction with the

SocialConnect platform,

the access control

component encounters

challenges, hindering the

seamless authentication

and redirection process.

The access control

component struggles to

accurately manage and

update the authentication

status, leading to

inconsistencies in

determining whether the

user is authenticated or

not. Sarah experiences

issues with the redirection

mechanism, where she

may encounter

unexpected redirects or

errors when attempting to

access authenticated

content.

Task: Create App

Function Component:

Define the main functional

component named App.

useState Hooks: Utilize

useState Hook to manage

state for board,

currentPlayer, winner,

and confetti.

Handle Cell Click

Function: Implement a

function handleCellClick to

handle cell clicks on the

board and update the

game state accordingly.

Check Winner Function:

Define a function

checkWinner to determine

if there's a winning player

based on the current

board state.

Reset Game Function:

Create a handle Reset

function to reset the

game state to its initial

values.

Render Cell Function:

Implement a render Cell

function to render

individual cells on the

game board.

Render Board Function:

Create a render Board

function to render the

entire Tic-Tac-Toe board

using the render Cell

function.

Create Secure, Data-

Driven React Applications

with Full CRUD Operations

and Authentication

Implement data fetching

in React applications

using both Fetch API and

Axios.

Demonstrate proficiency

in performing CRUD

operations (Create, Read,

Update, Delete) with a

clear understanding of

how to interact with

RESTful APIs.

Show competence in

handling API responses

and errors, implementing

appropriate error handling

and user feedback

mechanisms. The ability

to use async and await for

managing asynchronous

operations should be

evident in their code,

ensuring readability and

maintainability. For

authentication and

authorization, implement

secure user

authentication processes,

manage tokens, and

protect routes based on

user roles or permissions.

Use Case 1: Github Profile

Viewer in React js

Scenario: Imagine you're

a developer building a

portfolio website. You

want to include a feature

that allows visitors to

view your GitHub profile

directly on your site. You

decide to create a GitHub

Profile Viewer component

using React. Visitors can

enter your GitHub

username, and the

component will fetch and

display your profile

information, including

your name, avatar, bio,

followers, following, and

public repositories. If

there's an error, such as

an incorrect username,

the component will

gracefully handle it and

display an error message.

This feature adds

interactivity to your

portfolio and showcases

your GitHub activity to

potential employers or

collaborators.

Task: Input field for

entering a GitHub

username.

Submit button to fetch

and display the user's

GitHub profile

information.

Error handling for cases

where the username is

not found or there is an

issue with the API

request.

Display of user's name,

avatar, bio, followers,

following, and public

repositories.

Use Case 2: Weather app

Scenario: Emma, a

traveler, relies on the

Weather Information

Application to plan her

outdoor activities during

her vacation. She inputs

her destination city to

check the weather

forecast, ensuring a

pleasant and enjoyable

trip without unexpected

weather disruptions.

Task: Obtain an API key

from OpenWeatherMap

for accessing weather

data.

Design the HTML

structure for the weather

application, including

input fields and display

areas.

Write JavaScript code to

fetch weather data from

the OpenWeatherMap API

based on user input.

Handle API responses and

update the UI with the

retrieved weather

information.

 Implement error handling

to manage cases where

the city entered by the

user is not found.

Style the application

using CSS to enhance the

user experience and

visual appeal.

TABLE 4: LIST OF FINAL PROJECTS (10 PROJECTS THAT

COMPREHENSIVELY COVER ALL THE LEARNING OUTCOME)

SL.NO FINAL PROJECT

1 Personal Blog Website

2 Online Portfolio for a Freelance Graphic Designer.

3 Dynamic Event Booking Website.

4 Interactive Task Management Application.

5 Random Quote Generator

6 Digital Timer

7 Tic Tac Toe Game

8 User Dashboard

9 Github Profile Viewer in React JS

10 Weather App

TABLE 5: COURSE ASSESSMENT RUBRICS (TOTAL MARKS: 75)

ASSESSMENT
CRITERIA

DESCRIBE THE CRITERIA OF THE BELOW
CATEGORY PERFORMANCE

TOTAL
MARKS

FAIR GOO
D

EXCELL
ENT

Problem
Definition &
Design

Thinking

3

5

8

10

Innovation &
Problem
Solving

1

2

4

5

Implementati
on of Project

6

12

18

20

Performance
of the Project

1

2

4

5

Project
Demonstratio
n &

Documentatio
n

3

5

8

10

MCQ-based

assessment
25 Questions

25

