NAAN MUDHALVAN – POLYTECHNIC – ODD SEMESTER 2025-26

COURSE CURRICULUM

PLC PROGRAMMING AND APPLICATIONS

ABOUT THE COURSE

This course trains students in **practical skills related to PLC** (**Programmable Logic Controller**) **programming and HMI (Human-Machine Interface) design**. It focuses on essential concepts such as wiring, addressing, bit logic, structured programming, analog signal processing, and system integration using tools like SCADA.

COURSE NAME:	PLC Programming and Applications
TOTAL DURATION:	60 HRS
MODE OF DELIVERY	PHYSICAL CLASSROOM TRAINING AT RESPECTIVE
	COLLEGES
TRAINER TO	1:60
STUDENT RATIO:	
TOTAL MARKS:	70 (External) + 30 (Internal)

	TABLE 1
OVERALL COURSE OBJECTIVE	 Analyse the fundamentals of PLCs and their role in industrial automation, including hardware configuration and programming languages. Develop and implement practical PLC applications involving wiring, addressing, and bit logic instructions. Construct structured PLC programs using Function Blocks (FBs), Function Calls (FCs), and Data Blocks (DBs). Design and operate HMI systems and SCADA solutions for real-time control and monitoring. Integrate analogue signal processing and Industry 4.0 communication protocols for smart manufacturing applications.
LEARNING OUTCOME	 Configuration of PLC and I/O interface. Program the PLC using bit logic, timer and controls. Implement PLC Applications using Digital and Analog I/O. Design SCADA systems and apply Industry 4.0 protocols for smart manufacturing.

TABLE 2: MODULE-WISE COURSE CONTENT AND OUTCOME					
SL.NO	MODULE NAME	MODULE CONTENT	MODULE LEARNING OUTCOME	DURATION (HRS)	
1.	Introduction to PLC	 Introduction and Classification of Automation Introduction OPLC and Programming Languages PLC CPU & Hardware 	Understand the basics of automation, PLC roles, classifications, and hardware components.	8 hours	
2.	HMI Design Software	 PLC wiring and addressing HMI Design software and different views Commissioning of S7-1200: Practical tasks 	Acquire practical skills in wiring, addressing, and using HMI design software for PLC commissioning tasks.	10 hours	
3.	PLC Communication	 Bit logic instructions and hands-on practice Structured Programming (FB, FC, DB) Analog signal processing 	Apply bit logic and structured programming techniques and process analog signals effectively through hands-on practice.	10 hours	
4.	HMI Interfacing	 Introduction, Commissioning, and Interfacing of HMI Interfacing PLC Programs with HMI using Tags Alarms Recipe User Administration 	Demonstrate the ability to interface PLC programs with HMI, configure alarms, manage recipes, and handle user administration.	8 hours	
5.	Advanced PLC Communication	 Advanced PLC Communication using HMI Design software Integrating PLC with 	Develop advanced skills in PLC communication, SCADA system integration, and explore IoT protocols	9 hours	

SCADA	through	practical	
Systems and	examples.		
IoT			
communication			
- Practical			
Applications			
and Case			
Studies			

TABLE 3: OVERALL COURSE LEARNING OUTCOME ASSESSMENT CRITERIA AND USECASES			
LEARNING OUTCOME	ASSESSMENT CRITERIA	USECASES	
Automation and PLC Programming	 Explain automation types and applications. Identify PLC components and their functions. 	Use Case 1: Automation in Manufacturing Scenario: A manufacturing company wants to automate its production line using PLCs. Task: Students must analyse the production process, classify automation levels, and identify the PLC components required for the system.	
PLC wiring, addressing, and commissioning using HMI software.	- Demonstrate PLC wiring and addressing. - Perform basic commissioning of an S7-1200 PLC.	Use Case 2: Wiring and Commissioning of Robotic Arm Scenario: A robotics company needs to set up and commission a robotic arm for assembly tasks. Task: Students must wire the PLC, assign addresses, and use HMI design software to commission the robotic arm.	
Implement bit logic, structured programming, and analog signal processing through practical tasks.	 Write and debug bit logic programs. Use FB, FC, and DB effectively. Process analog signals. 	Use Case 3: Automated Water Pump Control Scenario: A water treatment facility requires automation for its pumping system to regulate flow and pressure. Task: Students must develop a PLC program using bit logic and structured programming and integrate analog sensors to monitor flow and pressure	
Interface PLC programs with HMI to configure tags,	 Configure HMI tags and alarms. Manage recipes and user roles in HMI. 	Use Case 4: HMI Setup for Chemical Processing Scenario: A chemical plant requires an HMI system to	

alarms, recipes, and user administration.		monitor and control temperature and pressure
		Task: Students must interface PLC programs with HMI, configure alarms for critical thresholds, and manage operator roles through user administration.
Integrate PLCs with SCADA and IoT protocols for smart manufacturing solutions.	- Design and implement advanced PLC communication. - Demonstrate SCADA system integration.	Use Case 5: IoT-Enabled Predictive Maintenance Scenario: A factory wants to integrate predictive maintenance using IoT protocols and SCADA for real- time monitoring. Task: Students must establish PLC-SCADA communication, implement IoT protocols, and design a system for monitoring machine health.

TA CON	ABLE 4: LIST OF FINAL PROJECTS (20 PROJECTS THAT MPREHENSIVELY COVER ALL THE LEARNING OUTCOME)				
SL.NO	FINAL PROJECT				
	(The Training Partner shall cover all the steps to complete a				
	given project)				
1.	Basic Conveyor Belt Control:				
	lask 1: Design a ladder diagram to start and stop a conveyor belt using a push button.				
	Task 2: Implement a sensor to detect the presence of an item on the conveyor.				
	Task 3: Stop the conveyor when the item reaches the end using a				
	Task 4. Add an emergency stop button for safety nurposes				
	Task 5: Test the system for correct item detection and conveyor operation.				
2.	Traffic Light Control:				
	Task 1: Create a ladder diagram to control traffic lights for a 4-way intersection.				
	Task 2: Implement timers to switch between red, yellow, and green				
	lights.				
	Task 3: Ensure green lights alternate for each direction with time				
	delays.				
	Task 4: Integrate pedestrian crossing signal control.				
	Task 5: Test the system for proper traffic light switching and timing.				
3.	Water Pump Control:				
	I ask 1: Design a ladder diagram to start and stop a water pump				
	based on water level sensors.				

	Task 2: Use high and low-level sensors to control the pump
	operation.
	Task 3: Set up an alarm if the water level is too high or low.
	Task 5. Test the water level control system with varving sensor
	inputs
4.	Temperature Monitoring System:
	Task 1: Design a ladder diagram to monitor temperature with a
	sensor input.
	lask 2: Implement a control output to activate a cooling system
	Task 3. Use an analog sensor for continuous temperature
	measurement.
	Task 4: Set up an alarm when the temperature exceeds the safety
	limit.
	Task 5: Test the system for correct temperature control and alarm
	activation.
5.	Automatic Door System: Task 1: Create a ladder diagram to open and close a sliding door
	using motion sensors.
	Task 2: Integrate a push button for manual door control.
	Task 3: Add a delay function for door closure after no motion is
	detected.
	lask 4: Set up a safety sensor to prevent door closing when an
	Obstruction is delected. Task 5: Test the door system for proper operation and safety
6.	Simple Elevator Control:
	Task 1: Design a ladder diagram to control an elevator with floor
	selection buttons.
	Task 2: Implement floor sensors to detect the elevator's position.
	Task 3: Add a door open/close control for each floor.
	elevator is overloaded
	Task 5: Test the elevator system for correct floor selection and door
	operation
7.	Automatic Washing Machine:
	Task 1: Create a ladder diagram to control the washing machine
	Cycle using a start/stop button.
	phases.
	Task 3: Use water level sensors to control water intake.
	Task 4: Add a door lock function during the wash cycle for safety.
	Task 5: Test the washing machine system for cycle completion and
0	water control.
δ.	Level Control In Lank: Task 1: Design a ladder diagram to maintain a constant water level
	in a tank.
	Task 2: Implement high and low-level sensors for tank monitoring.
	Task 3: Use a valve control to add or release water based on sensor
	input.

	Task 4: Add an alarm if the water level exceeds the safe range.
	Task 5: Test the system for accurate water level maintenance.
9.	Basic Alarm System:
	Task 1: Create a ladder diagram to monitor a sensor for fault
	detection.
	Task 2: Set up an alarm to activate when a fault is detected.
	Task 3: Add a reset button to deactivate the alarm.
	Task 4: Integrate a delay function for the alarm response.
	Task 5: Test the alarm system with simulated faults.
10.	Bottle Filling System:
	Task 1: Design a PLC program to control a bottle filling process
	using sensors.
	Task 2: Implement a level sensor to stop the filling process once
	the bottle is full.
	Task 3: Add a conveyor system to move bottles to and from the
	filling station.
	Task 4: Integrate a valve control for the liquid flow.
	Task 5: Test the filling system for accurate bottle filling and sensor
	operation.
11.	Automated Sorting System:
	Task 1: Create a PLC program to sort items on a conveyor belt using
	optical sensors.
	Task 2: Set up pneumatic actuators to divert items to different
	chutes.
	Task 3: Implement a control for different sorting criteria (size, color,
	etc.).
	Task 4: Add a stop function to halt the system in case of an error.
	Task 5: Test the sorting system for proper item detection and
12	Sorting.
12.	Elevator with Multiple Floors:
	multiple fleers
	Track 2. Implement fleer colection buttons and position concern
	Task 2. Integrate deer open/class control for each floor
	Task 4: Add an omorgonov stop button to balt the elevator
	Task 5. Test the elevator system for correct operation on all floors
12	Air Conditioning System Control:
15.	Task 1: Create a PLC program to control an air conditioning system
	hased on temperature sensors
	Task 2: Implement a control output to turn the ΔC on or off based
	on the temperature setnoint
	Task 3. Add a timer to limit the duration of the air conditioning
	Task 4: Integrate a humidity sensor to control air quality.
	Task 5: Test the system for temperature and humidity control.
14.	Automated Greenhouse System:
	Task 1: Design a PLC program to control the environment in a
	greenhouse (temperature, humidity).
	Task 2: Implement sensors to measure temperature and humidity
	levels.
	Task 3: Use actuators to control fans and heating systems.

	Task 4: Set up an alarm if environmental conditions fall outside the
	desired range.
	Task 5: Test the greenhouse system for proper environmental
	control.
15.	Smart Lighting System:
	Task 1: Create a PLC program to control lighting based on motion
	detection.
	Task 2: Integrate a timer to turn lights off after a set period of no
	motion.
	Task 3: Use a light sensor to adjust lighting levels according to
	ambient light.
	Task 4: Implement manual override switches for user control.
	Task 5: Test the lighting system for motion detection and automatic
1.0	aimming Advanced Bettle Conning Systems
16.	Advanced Bottle Capping System:
	Task 1: Design a PLC program to control a bottle capping machine.
	for capping
	Task 3: Control the capping mechanism based on sensor feedback
	Task 4: Add a reject mechanism for misaligned bottles
	Task 5: Test the system for correct capping and rejection.
17.	Robotic Arm Control:
	Task 1: Create a PLC program to control the movements of a robotic
	arm.
	Task 2: Implement position sensors to track the arm's location.
	Task 3: Integrate motor controls for different arm movements
	(rotate, lift, etc.).
	Task 4: Add an emergency stop function for safety.
	Task 5: Test the robotic arm's accuracy and safety functions.
18.	Automated Packaging System:
	Task 1: Design a PLC program to automate the packaging process
	using a conveyor system.
	rask 2: Control the new of products onto a packaging station using
	Selisors.
	automatically
	Task 4: Add a quality control station to check package integrity
	Task 5: Test the system for correct packaging and sealing.
19.	Automated Parking System:
	Task 1: Create a PLC program to control an automated parking
	system.
	Task 2: Implement sensors to detect available parking spaces.
	Task 3: Use a conveyor or automated guided vehicle (AGV) to park
	cars.
	Task 4: Integrate a payment system and exit control.
	Task 5: Test the system for parking accuracy and space
	management
20.	Smart Factory Automation:
	LASK 1: Design a PLC program for a smart factory automation
1	system with multiple production lines.

Task 2: Integrate sensors to monitor machine status and product quality.
Task 3: Implement automatic material handling using conveyors and AGVs.
Task 4: Add a data logging system for production and maintenance reports.
Task 5: Test the entire automation system for seamless integration and operation.

TABLE 5: COURSE ASSESSMENT RUBRICS (TOTAL MARKS: 70)					
ASSESSMENT	DESCRIBE THE CRITERIA OF THE BELOW CATEGORY PERFORMANCE				
CRITERIA	FAIR	GOOD	EXCELLENT	PIARKS	
1. Demonstrate PLC wiring and addressing	Wiring and addressing are partially correct	Wiring is correct but addressing is incomplete	Wiring and addressing are complete and error-free	15	
2. Perform commissioning tasks using S7-1200.	Partial commissioning with errors	Commissioning is mostly correct but lacks validation	Commissioning is complete, validated, and documented	15	
3. Write and debug bit logic programs.	Basic program with limited functionality	Mostly functional program with minor debugging issues	Fully functional program, debugged, and optimized	15	
4. Configure HMI tags and alarms.	Few tags/alarms configured with errors	Most tags/alarms configured correctly	All tags/alarms configured perfectly with example	15	
5. Design and implement advanced PLC communication	Limited communication design with errors	Effective communication design with minor gaps	Advanced communication with SCADA and IoT integration	10	
Total					