COURSE NAME:	Sustainability & Green Chemistry in EV Sector
TOTAL DURATION:	45 Hrs
MODE OF DELIVERY	PHYSICAL CLASSROOM TRAINING
TRAINER TO	1.50
STUDENT RATIO:	1.50
TOTAL MARKS:	75

	Table 1	
OVERALL	1. Assess the challenges and opportunities in adopting	
COURSE	sustainability principles within the EV sector, prioritizing	
OBJECTIVE:	environmental and economic benefits.	
	2. Develop and implement strategies to incorporate green	
	chemistry principles in EV manufacturing processes,	
	minimizing environmental impact.	
	3. Conduct lifecycle assessments to evaluate resource	
	efficiency and propose actionable improvements for	
	reducing carbon footprint in EV production.	
	4. Design AI-driven solutions to enhance green chemistry	
	practices, streamline processes, and ensure real-time	
	monitoring and reporting.	
	5. Formulate strategies to ensure compliance with global	
	and regional sustainability frameworks, promoting	
	scalable and ethical EV production practices.	

LEARNING	1. Evaluate sustainability challenges in the EV sector and
OUTCOME:	design eco-friendly manufacturing strategies using
	green chemistry principles.
	2. Conduct and interpret lifecycle assessments to identify
	inefficiencies, reduce carbon footprints, and improve
	resource utilization in EV production.

3. Create predictive AI tools to monitor green chemistry
practices, automate sustainability reporting, and
enhance decision-making in real-time.
4. Align EV manufacturing practices with global
sustainability standards, demonstrating expertise in
preparing documentation and conducting mock audits.
5. Design forward-thinking solutions by integrating future
trends and technologies in green chemistry, ensuring
scalability and sustainability in the EV sector.

	TABLE 2: MODULE WISE COURSE CONTENT AND OUTCOME			
SL. NO	MODULE NAME	MODULE CONTENT	MODULE LEARNING OUTCOME	DURA TION (HRS)
1	Sustainability and Green Chemistry in EVs	 Overview of sustainability challenges in the EV sector Fundamentals of green chemistry and its application to EV production Eco-friendly materials in EV manufacturing Lifecycle assessments to measure environmental impact 	Prioritize sustainability in EV manufacturing by integrating green chemistry principles, selecting eco-friendly materials, and performing lifecycle assessments to optimize resource utilization and minimize environmental impact.	9

2	Advanced Tools for Green Chemistry Optimization	 Application of AI tools in monitoring and enhancing green chemistry Development of predictive models for sustainability optimization Automation of sustainability reporting using AI-driven tools 	Create AI-driven solutions to optimize green chemistry practices, including predictive modeling, real-time monitoring, and automated reporting, to enhance the sustainability of EV production processes.	9
3	Regulatory Frameworks and Compliance	 Alignment with global sustainability standards (e.g., ISO 14001, GRI guidelines) Documentation for regulatory compliance Mock audits for sustainability frameworks 	Evaluate and ensure compliance with global sustainability standards, prepare documentation for audits, and align EV manufacturing practices with regulatory frameworks to promote eco-friendly production processes.	9
4	Real-World Applications and Workshops	 Case studies on sustainable EV production Hands-on workshops for implementing green chemistry solutions Evaluation and improvement of green practices through practical exercises 	Develop practical solutions by examining real-world case studies, conducting hands-on workshops, and proposing improvements to current green chemistry practices in EV manufacturing based on workshop outcomes.	9

5	Innovations and Future Trends in Green Chemistry	 Emerging technologies in green chemistry for EVs Innovations in sustainable EV production Strategies to integrate future trends in green chemistry and sustainability practices 	Formulate strategies to adopt emerging technologies and innovations in green chemistry, preparing for the future of sustainable EV production by identifying impactful advancements and integrating them into	9
			existing processes.	

TABLE 3: OVERA	TABLE 3: OVERALL COURSE LEARNING OUTCOME ASSESSMENT			
CRITERIA AND U	CRITERIA AND USE CASES			
LEARNING	ASSESSMENT	Performance	USE CASES	
Ουτςομε	CRITERIA	Criteria		
Prioritize	Evaluate	Recommend eco-	Create a report	
sustainability in	sustainable	friendly materials and	proposing	
EV manufacturing	practices and	justify their benefits	sustainable	
by integrating	material	for EV manufacturing.	materials for EV	
green chemistry	choices.	Design production	battery production,	
principles and		processes that reduce	highlighting	
eco-friendly		carbon footprint and	environmental	
materials.		waste.	benefits and cost-	
			effectiveness.	
Perform lifecycle	Conduct	Measure and report	Perform an LCA for	
assessments to	lifecycle	carbon footprint	EV battery	
optimize resource	assessments	across production	production,	
utilization and	(LCAs) for key	stages. Propose	identifying stages	
reduce	EV components.	actionable	with high	
environmental		recommendations to	emissions and	

impact in EV production.		improve resource efficiency and reduce emissions.	suggesting strategies to reduce environmental impact.
Develop AI-driven solutions to monitor and enhance green chemistry practices in EV manufacturing.	Utilize AI tools and predictive models for sustainability optimization.	Automate sustainability reporting with AI- driven tools. Use predictive analytics to optimize green chemistry processes in real-time.	Implement an AI model to monitor energy efficiency in EV production and generate automated reports on sustainability metrics.
Align EV sector practices with global sustainability standards and frameworks.	Assess compliance with sustainability regulations and standards.	Prepare documentation for audits and demonstrate adherence to sustainability frameworks like ISO 14001 or GRI. Conduct mock audits to ensure process compliance.	Conduct a mock audit for an EV production unit to evaluate its alignment with ISO 14001 standards, proposing corrective actions where necessary.
Formulate strategies to integrate innovations and future trends in green chemistry	Identify and evaluate emerging technologies in green chemistry.	Design processes incorporating new green technologies. Present a plan to implement innovative solutions for enhancing	Develop a roadmap for integrating hydrogen-based battery production technology, considering its scalability and

for EV	sustainability in EV	environmental
manufacturing.	production.	impact.

TABLE 4 COMPR	4: LIST OF FINAL PROJECTS (PROJECTS THAT EHENSIVELY COVER ALL THE LEARNING OUTCOME)
SL.NO	FINAL PROJECT
1	AI-powered tool for minimizing waste in EV manufacturing.
2	Lifecycle analysis for a specific EV component.
3	Design a sustainable EV battery production model.
4	Case study on reducing hazardous waste in EV production.
5	Green chemistry audit for an EV manufacturing plant.
6	Develop a waste management protocol using green chemistry.
7	AI-based analysis for material substitution in EV batteries.
8	Propose sustainable alternatives for EV interior materials.
9	Cost-benefit analysis of green materials in EV.
10	Create a dashboard for tracking green practices in production.
11	Study of eco-friendly production techniques.
12	Predictive analysis of EV production impact using AI.
13	Design a green chemistry curriculum for industry training.
14	Sustainable resource management in EV supply chain.
15	Document on global regulations for green chemistry in EV.

16	AI model for sustainable material sourcing.
17	Proposal for biodegradable packaging for EV parts.
18	Study on the life cycle of lithium-ion batteries.
19	Framework for energy-efficient EV production.
20	Impact assessment of green chemistry in EV sectors globally.

TABLE 5: COURSE ASSESSMENT RUBRICS (TOTAL MARKS: 75)									
ASSESSME NT CRITERIA	Learning Outcome	Fair (1–5)	Good (6- 10)	Excellent (11–15)	TOTA L MARK S				
Evaluating Sustainable Practices and Material Choices	Prioritize sustainabilit y in EV manufacturi ng by integrating green chemistry principles and eco- friendly materials.	Proposes basic eco-friendly materials with limited impact on sustainability.	Recommends effective materials and provides detailed comparisons of environmenta I benefits.	Designs innovative processes that integrate advanced green materials and maximize environmen tal benefits.	15				
Conducting Lifecycle Assessment s (LCAs)	Perform lifecycle assessments to optimize resource utilization and reduce environment al impact in	Identifies basic lifecycle stages but provides limited recommendati ons.	Measures key resource metrics and suggests moderate improvement s for resource efficiency.	Delivers comprehen sive lifecycle analyses with innovative strategies to minimize	15				

	EV production.			emissions and waste.	
Utilizing AI Tools for Green Chemistry Optimization	Develop AI- driven solutions to monitor and enhance green chemistry practices in EV manufacturi ng.	Demonstrates limited application of AI tools and basic automation capabilities.	Effectively uses AI tools for real-time monitoring and moderate optimization of green practices.	Creates advanced AI-driven models to fully optimize processes, automate reporting, and enhance efficiency.	15
Compliance with Sustainabilit y Standards	Align EV sector practices with global sustainabilit y standards and frameworks.	Demonstrates basic understanding of standards and partial compliance documentation	Prepares accurate compliance reports and demonstrates strong alignment with sustainability goals.	Conducts detailed mock audits and presents innovative solutions to exceed sustainabilit y requiremen ts.	15
Integrating Innovations in Green Chemistry	Formulate strategies to integrate innovations and future trends in green chemistry for EV manufacturi ng.	Identifies emerging trends but lacks detailed integration strategies.	Develops practical strategies to incorporate innovations in green chemistry.	Proposes innovative, future- ready strategies that significantly enhance sustainabilit y and scalability.	15