Surface Modelling:

Course Objectives	 Develop proficiency in the extruding technique to transform wireframe geometries into solid models. Surface modeling principles and techniques. Explore the impact of surface relimitations on aesthetics, functionality, and manufacturability. Foster a quality-driven mindset by incorporating surface check tools into the design validation process.
Course Outcomes	 Exhibit the fundamentals of Generative Shape Design and its application in creating wireframe geometry. Proficient in the extruding technique to transform wireframe geometries into solid models. Explore the impact of surface delimitations on aesthetics, functionality, and manufacturability. Quality-driven mindset by incorporating surface check tools into the design validation process.

Course Duration: 45 Hours

Course Curriculum:

UNIT 1: GENERATIVE SHAPE DESIGN

Introduction to Surface Design- Advantages of using generative shape design- Designing a surface-based feature- Managing features- Introduction to ordered geometrical set-Geometrical set versus ordered geometrical set- About hybrid design-Creating a Reference Geometry-Introduction to Reference Geometry- Creating Reference Geometries- Introduction to local geometries- Creating Multiple axis systems.

UNIT 2: CREATING A WIREFRAME GEOMETRY AND EXTRUDING

Creating 3D curves - About the curve continuity- About the impact of tension- creating curves from scratch- Creating a 3D Corner- Creating a Boundary- Projecting elements-Creating parallel curve - Extruding and revolving a profile and sweeping a profile - Selecting profiles for extrude and revolve- Extruding a profile - Revolving a profile-Extruding/revolving a profile using the context toolbar-Creating a surface offset from a Reference-Creating an offset surface- Sweeping a profile- Importance of the Spine-Calculating a spine using a plane or guide curve- About explicit Sweep- About conical sweep

UNIT 3: CREATING SURFACES

Creating a Multi-Section and an Adaptive Sweep Surface - Creating Multi-section

surface-Create an Adaptive Sweep Surface-Calculating an Adaptive Sweep- Adaptive Sweep and simple Sweep- Constrained Sketch- Common errors when computing the Sweep- Create an adaptive Sweeping using Existing Surface

UNIT 4: SURFACE RELIMITATIONS

Surface Re-Limitation and Connection - About the Re-limitation of Surfaces-Commands to Re- limit Surfaces and Curves- About the split Command- Splitting Elements- About the Trim Command- Trimming an Element- About Extrapolation of Elements- Create a Car Door handle - Connecting Surfaces Smoothly - Understanding the need to connect the Surfaces smoothly- Types of fillets- Managing Shape fillets extremities- Creating an Edge Fillet Using the Context Toolbar- Criteria for Selecting the Blends and the Fillets- Exercise: Create the Fillets for Existing Surface

UNIT 5: SURFACE CHECK TOOLS

Checking the Surface Continuity - Understanding the need of Surface Continuity-Exercise: Analyze the surface Continuity- Types of Flaws- Detecting the Geometric Connection in the Surfaces- Connection Analysis- Analyzing Surface - Curve Connections- Healing Operation

LIST OF EQUIPMENTS FOR BATCH OF 50 STUDENTS			
S NO	Туре	Description	Qty
1	Workstation	32 GB RAM, Intel i7 Processor, 4 GB Graphics Card, Operating System 250GB, Storage 250GB hard disk, Mouse, Keyboard.	50
2	Projector	LCD Projector or Smart Board	1
3	Internet	50 to 100 Mbps High Speed Internet Connection with Wi-Fi facility	1
4	Computer Lab	Computer lab with 50 Students Capacity	1
5	Software	Dassault Systems 3DEXPERIENCE R2022x Hotfix6.28	50

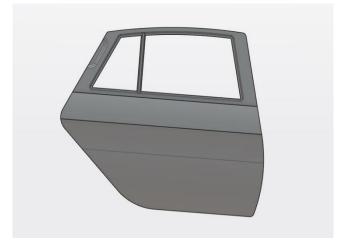
Test Projects:

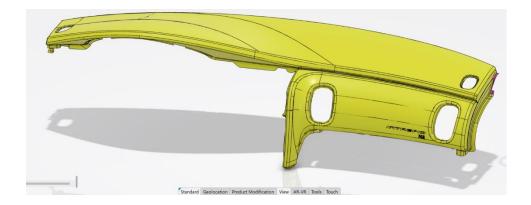
Use Cases:

INDSUTRY SCOPE:

Automotive, Industrial Equipment, Aerospace, Agriculture, Electric Vehicle, Manufacturing, Production, Heavy Machinery industry.

TASK 1: Design of Badminton bat frame.


TASK 2: Design of Dryer


TASK 3: Design of Aircraft Prope.

TASK 4: Design of Car door panel.

TASK 5: Design of Car Dashboard

INDUSTRY USE CASES

- 1. Automotive industry: Creating and refining complex car body designs, including exterior surfaces and aerodynamic components.
- 2. Aerospace industry: Designing aircraft fuselages, wings, and engine nacelles with precise surface curvature and aerodynamic characteristics.
- 3. Product design and consumer goods: Developing consumer products such as electronics, appliances, and furniture with sleek and ergonomic surface designs.
- 4. Industrial machinery: Designing complex machinery and equipment with smooth and functional surface profiles for efficient operation.
- Architecture and construction: Creating 3D models of buildings, structures, and interiors with accurate surface representation for visualization and design evaluation.
- 6. Medical devices: Designing prosthetics, orthopedic implants, and medical equipment with anatomically accurate and patient-specific surface shapes.
- 7. Jewelry and accessories: Designing intricate and detailed surfaces for jewelry, watches, and fashion accessories.
- 8. Packaging industry: Designing product packaging with attractive and functional surface textures, patterns, and branding elements.
- 9. Consumer electronics: Designing smartphones, tablets, laptops, and other electronic devices with visually appealing and ergonomic surface forms.

- 10. Furniture design: Creating stylish and comfortable furniture designs with visually pleasing surface contours and textures.
- 11. Sports equipment: Designing sports equipment like bicycles, helmets, and tennis rackets with optimized aerodynamics and performance-enhancing surfaces.
- 12. Film and entertainment industry: Creating visual effects and character models with detailed and realistic surface textures for movies, games, and animations.
- 13. Industrial design: Designing industrial equipment, tools, and machinery with optimized surface profiles for improved functionality and ergonomics.
- 14. Packaging design: Creating innovative and visually appealing packaging designs for food, beverages, cosmetics, and other consumer products.
- 15. Art and sculpture: Designing and visualizing artistic sculptures and installations with intricate and unique surface forms.
- 16. Footwear design: Designing comfortable and stylish footwear with optimized surface shapes and contours for proper fit and aesthetics.
- 17. Marine and shipbuilding industry: Designing ship hulls and marine structures with hydrodynamic surface shapes for optimal performance and fuel efficiency.
- 18. Interior design: Creating 3D models of interior spaces with accurately represented surface materials, textures, and finishes.
- Consumer appliances: Designing appliances such as refrigerators, washing machines, and kitchen gadgets with user-friendly and visually appealing surface designs.
- 20. Sustainable design: Designing environmentally friendly products with optimized surface forms to minimize material waste and improve resource efficiency.