Naan Mudhalvan – Polytechnic – Even Semester 2024-25 4th Semester – Course Curriculum

ABOUT THE COURSE

COURSE NAME:	Additive Manufacturing
TOTAL DURATION:	60 HRS
MODE OF DELIVERY	PHYSICAL CLASSROOM TRAINING AT RESPECTIVE
	COLLEGES
TRAINER TO	1:60
STUDENT RATIO:	
TOTAL MARKS:	70 (External) + 30 (Internal)
	(Final Assessment shall be done by TNSDC)

TABLE 1				
OVERALL COURSE OBJECTIVE:	 Analyse the fundamental principles of additive manufacturing, including how 3D printing creates objects layer by layer. Apply various additive manufacturing technologies such as Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS), Stereolithography (SLA), and Selective Laser Melting (SLM). Evaluate the differences, advantages, and limitations of each technology and how to select the appropriate one for different applications. Analyse the wide range of materials used in AM, including plastics, metals, ceramics, and composite. 			
LEARNING OUTCOME:	 Application of various types of additive manufacturing technologies and select the right process for a given application based on material, geometry, and other factors. Design and prepare 3D models for additive manufacturing, ensuring they are optimized for printing, minimizing errors and material waste. Analyse the properties and applications of different AM materials, and the ability to choose the right material for specific use cases, balancing performance and cost. Develop skills in various post-processing methods, allowing students to finish printed parts to meet required tolerances and surface finishes Analyse real-world applications of additive manufacturing across different industries 			

and assess its potential for solving complex
manufacturing challenges.

	TABLE 2: MODULE-WISE COURSE CONTENT AND OUTCOME			
SL. NO	MODULE NAME	MODULE CONTENT	MODULE LEARNING OUTCOME	DURATIO N (HRS)
1	Introduction to Additive Manufacturi ng	Overview of Additive Manufacturing (AM); History, Types of AM, Applications in various industries (Aerospace, Automotive, Medical, etc.).	Analyse the concept of Additive Manufacturing and its historical evolution. Identify various types of 3D printing technologies and their industrial applications.	3
2	AM Technologies and Processes	Detailed study of AM technologies: FDM (Fused Deposition Modeling), SLA (Stereolithograph y), SLS (Selective Laser Sintering), and others.	Apply the working principles of various 3D printing processes. Identify suitable applications for each AM technology.	6
3	Materials for Additive Manufacturi ng	Materials used in AM: Polymers, Metals, Ceramics, and Composite materials. Material properties, selection criteria, and challenges.	Evaluate different materials used in AM and their specific properties. Learn how to select materials based on process and application	5
4	CAD Modeling for Additive Manufacturi ng	Introduction to Computer-Aided Design (CAD); Designing for Additive Manufacturing (DFAM). Software tools used for 3D modeling (AutoCAD, SolidWorks, etc.).	Application of the principles of CAD and how to design parts for 3D printing. Apply the techniques to optimize designs for AM processes (e.g., minimizing material use, ensuring printability).	6
5	Slicing Software and 3D Printing Setup	Introduction to slicing software; Process of converting CAD files into STL format; Setting	Use slicing software to convert 3D models for AM. Understand the importance of correct setup for 3D printers to	5

			ana ang kinka ang litur	l
		up 3D printers;	ensure high-quality	
		Layer-based	prints.	
	Dest	printing.	Tranlament next	
	Post-	Techniques after	Implement post-	
6	Processing	printing: Support	processing steps in AM,	
	Techniques	removal,	and learn how to	
		polishing, curing,	achieve the desired	4
		surface finishing,	finish and mechanical	
		and quality	properties of 3D	
		checks.	printed parts	
_	Design for	In-depth study of	Design components	
7	Additive	design	effectively for AM	
	Manufacturi	considerations for	processes by	
	ng (DFAM)	AM: Geometry,	considering factors like	C
		support	part orientation,	6
		structures,	support structures, and	
		orientation,	geometry for	
		overhangs, and	minimizing waste and	
	Appliesties	infill patterns.	improving strength.	
8	Applications of Additive	Real-world	Evaluate various	
0	Manufacturi	applications of AM in industries such	industrial applications	
		as automotive,	of AM, learn through case studies, and	4
	ng			4
		aerospace, medical devices,	identify new opportunities for	
		consumer goods,	innovation using 3D	
		and architecture.	printing.	
		Case studies of	princing.	
		successful		
		applications		
	Challenges	Challenges in AM:	Identify the challenges	
9	and Future	Speed, cost,	currently faced by the	
	Trends	material	AM industry. Apply the	
	litendo	limitations,	emerging trends and	
		quality control,	future directions for AM	3
		and scalability.	technologies.	J
		Future trends in		
		AM including		
		multi-material		
		printing, AI		
		integration, and		
		sustainable AM.		
	Practical	Hands-on	Apply knowledge of 3D	
10	Demonstrati	training: Setting	printing technologies	
	on and	up a 3D printer,	and processes to	
	Hands-on	printing a simple	complete a hands-on	
	Project	object, post-	project, from design to	5
		processing	printing and post-	
		techniques.	processing.	
		Practical project		
		development.		

TABLE 3: OVERALL COURSE LEARNING OUTCOME ASSESSMENT CRITERIA AND USECASES				
LEARNING OUTCOME	ASSESSMEN T CRITERIA	PERFORMA NCE CRITERIA	USECASES	
Understanding Additive Manufacturing Concepts	Knowledge of AM technologies and processes.	Correctly identify and explain different 3D printing processes (FDM, SLA, SLS, etc.) and their applications	Automotive part prototyping, Aerospace lightweight structures.	
Mastery of AM Technologies	Ability to select appropriate AM technology based on material and design requirements	Demonstrate the ability to choose the correct AM process (e.g., FDM for prototypes, SLS for durable parts).	Creating custom prosthetics, Manufacturing of tooling and molds.	
Material Selection for AM	Understandin g material properties and selection.	Show proficiency in selecting materials based on strength, flexibility, thermal resistance, and cost.	Medical implants, Aerospace components, Functional prototypes.	
Design for Additive Manufacturing (DFAM)	Application of DFAM principles in CAD modeling.	Design parts that are optimized for 3D printing (e.g., minimizing material usage, reducing the need for support).	Creating intricate geometries for customized products, Designing lightweight structures for drones.	
Slicing and 3D Printing Setup	Ability to use slicing software and	Successfully slice a 3D model and	3D printing a mechanical part,	

	figure 3D configur Iters. 3D print for effic printing	cient	I
--	--	-------	---

TABLE 4: LIST OF FINAL PROJECTS (20 PROJECTS THAT COMPREHENSIVELY COVER ALL THE LEARNING OUTCOME)			
SL.NO	FINAL PROJECT		
1	 Rapid Prototyping Task 1: Design a digital model of the product or component. Task 2: Slice the model into layers using slicing software. Task 3: Print the prototype using a 3D printer. Task 4: Perform a functional test on the prototype to check its design. Task 5: Refine the design based on feedback and print the revised prototype 		
2	 Custom Medical Implants Task 1: Obtain a 3D scan of the patient's anatomy (e.g., CT or MRI). Task 2: Design a custom implant based on the scan data. Task 3: Export the design as an STL file for printing. Task 4: Print the implant using biocompatible materials. Task 5: Conduct post-print quality control tests and prepare the implant for surgery. 		
3	 Aerospace Components Task 1: Design complex, lightweight parts for aerospace applications. Task 2: Optimize the part for strength and material usage using software. Task 3: Slice the design for 3D printing and choose the appropriate material. Task 4: Print the part using metal 3D printing or another suitable method. Task 5: Conduct performance testing, including stress and thermal tests. 		
4	 Aerospace Components Task 1: Design complex, lightweight parts for aerospace applications. Task 2: Optimize the part for strength and material usage using software. Task 3: Slice the design for 3D printing and choose the appropriate material. Task 4 : Print the part using metal 3D printing or another suitable method. Task 5: Conduct performance testing, including stress and thermal tests 		

	Customized Footwear
	• Task 1: Scan the customer's feet to capture shape and size.
	• Task 2: Design a custom shoe or sole using CAD software.
5	• Task 3: Choose materials suitable for footwear (e.g., TPU for
5	flexibility).Task 4: Print the customized footwear.
	• Task 5: Perform a wear test to ensure comfort and performance. Jewellery Design
	• Task 1: Design intricate jewellery pieces using CAD tools.
	• Task 2: Create a 3D model of the piece, incorporating design
	features
	like texture.
_	• Task 3: Convert the model into an STL file for 3D printing.
6	• Task 4: Print the jewellery using a resin printer or metal printer
	(for casting).
	• Task 5: Post-process the printed jewellery, including polishing
	and finishing.
	Spare Parts on Demand
	Task 1: Identify the broken or obsolete part needed.
	Task 2: Design a digital model of the replacement part.
	Task 3: Choose the correct material for the part (e.g., metal,
7	plastic).
	Task 4: Print the part to specifications.
	Task 5: Install the part in the machinery or equipment.
	Tooling and Jigs
	• Task 1: Design custom tooling, jigs, or fixtures based on
	production requirements.
	• Task 2: Create 3D models of the parts using CAD software.
	• Task 3: Print the tools using durable materials such as nylon or
8	carbon fiber.
	• Task 4: Test the functionality and accuracy of the tools.
	• Task 5: Adjust the design if necessary and reprint for further
	testing.
	Construction and Architecture
	• Task 1: Design building models or architectural elements using
	CAD tools.
	• Task 2: Use 3D printing to produce scaled models for
	presentations.
_	• Task 3: Optimize design structures for material efficiency and
9	strength.
	• Task 4: Print detailed architectural models with concrete or
	composite materials.
	• Task 5: Assemble the printed components in a construction
	setting for full-scale implementation.
	Aerospace Heat Exchangers Task 1: Design complex heat exchanger components with
	optimized airflow.
	• Task 2: Use software to simulate thermal performance.
10	• Task 3: Choose the material (e.g., titanium or aluminium) for
	heat resistance.
L	neurresistancer

	• Task 4: Print the heat exchanger with intricate lattice structures.			
	• Task 5: Test the heat exchanger's performance under operating			
	conditions.			
	Educational Models			
	Task 1: Identify the educational need for a specific 3D model			
	(e.g., anatomy, molecular structure).			
	 Task 2: Design or source educational 3D models. 			
11	• Task 3: Print the models using educational-grade materials.			
	• Task 4: Conduct classroom demonstrations with printed models.			
	• Task 5: Update or iterate on designs based on feedback and new			
	learning objectives.			
	Customized Eyewear			
	Task 1: Take precise measurements of the customer's face and			
	eyes.			
	• Task 2: Design a custom eyewear frame using CAD software.			
12	• Task 3: Choose suitable materials (e.g., flexible polymers or			
	lightweight metals).			
	• Task 4: Print the eyewear frame using 3D printing technology.			
	• Task 5: Fit the lenses into the frame and test for comfort and			
	functionality			
	Art and Sculpture			
	• Task 1: Design the artwork or sculpture using 3D modeling			
	software.			
	• Task 2: Choose the appropriate material for the sculpture (e.g.,			
13	resin, PLA).			
	• Task 3: Slice the design for 3D printing.			
	• Task 4: Print the artwork layer by layer.			
	• Task 5: Post-process the printed sculpture, including sanding,			
	painting, and finishing.			
	Consumer Electronics Enclosures			
	• Task 1: Design protective enclosures for electronics.			
	• Task 2: Optimize the design for airflow, heat dissipation, and			
	accessibility.			
14	• Task 3: Choose materials that are durable and heat-resistant			
14	(e.g., ABS, polycarbonate).Task 4: Print the enclosure and assemble it with the internal			
	electronic components.			
	• Task 5: Test the enclosure's performance, including temperature			
	regulation and durability.			
	Low-Volume Manufacturing			
	• Tasks:			
	1. Design a product for low-volume production.			
	2. Create a digital model and select the best material for the			
15	product.			
	3. Use slicing software to prepare the model for printing.			
	4. Print multiple units of the product in one print session.			
	5. Inspect the parts for quality and prepare them for shipping.			
	Automotive Tooling & Prototyping			
	• Task 1: Design automotive components or tools using CAD.			
16	• Task 2: Choose materials that match the functional needs of the			
10	part (e.g., strong composites).			
L				

	Task 3: Print prototypes or low-volume parts for testing.Task 4: Assemble the parts into an automotive prototype or
	production model.
	• Task 5: Test the prototypes for fit, function, and performance in
	Real world automotive conditions. Food Production
	• Task 1: Design 3D printable food items using CAD software.
	• Task 2: Select appropriate edible materials (e.g., chocolate,
	dough, or sugar).
	• Task 3: Print the food products layer by layer using food-safe 3D
17	printers.
	• Task 4: Ensure food safety and hygiene during the production
	process.
	• Task 5: Package and present the food products for consumption
	or sale. Metal 3D Printing for Tooling
	• Task 1: Design specialized metal tools for specific manufacturing
	needs.
	• Task 2: Choose the appropriate metal for the tool (e.g., steel,
	titanium).
18	• Task 3: Slice the design to optimize it for metal 3D printing.
	• Task 4: Print the metal tools using a laser or electron beam
	melting process.Task 5: Post-process the printed metal tools with heat treatment
	or finishing.
	Spare Parts for Obsolete Machinery
	• Task 1: Identify obsolete or damaged machinery parts that need
	replacement.
	• Task 2: Reverse engineer the part by scanning or measuring it.
19	• Task 3: Create a 3D model of the part using CAD software.
	• Task 4: Print the replacement part using the same material or a suitable alternative.
	• Task 5: Install and test the replacement part in the machinery
	for proper functionality.
	Development of Custom Prosthetics Using 3D Printing
	Task 1: Understand the functional and aesthetic needs of
20	prosthetic users.
	Task 2: Create a 3D design of a custom prosthetic limb based on
	user-specific data.
	Task 3: Print and assemble the prosthetic limb based on the CAD design.
	Task 4: Test the prosthetic limb's performance and gather
	feedback from the user.
	Task 5: Choose suitable materials for 3D printing that balance
	strength, flexibility, and cost.

TABLE 5: COURSE ASSESSMENT RUBRICS (TOTAL MARKS: 70)				
ASSESSME NT	DESCRIBE CA1	TOTAL MARKS		
CRITERIA	FAIR	GOOD	EXCELLENT	
1.Understan ding of Additive Manufacturin g Principles	Basic understanding of key AM technologies, but lacks depth.	Solid understanding of AM principles with some application examples.	Deep understanding of AM technologies, clear articulation of process, and real- world examples.	10
2. Design for Additive Manufacturin g (DFAM)	Able to design simple parts but struggles with optimization for AM.	Designs functional parts considering some DFAM principles.	Demonstrates advanced design skills, optimizing parts for 3D printing.	10
3. Material Selection and Application	Limited knowledge of material properties and selection for AM.	Correct material selection based on properties and application needs.	Expert material selection, considers performance, cost, and application suitability.	10
4. 3D Printing and Slicing Software Usage	Basic operation of slicing software and printer setup.	Able to slice models and set up printers with few errors.	Expert use of slicing software and printer configuration with minimal issues.	10
5.Post- Processing Techniques	Limited understanding of post- processing methods.	Knowledge of basic post- processing techniques.	Comprehensive understanding and application of advanced post- processing methods	5
6. Practical Application and Prototyping	Completed the project with minimal application of learned skills.	Prototyped a functional part, demonstrating reasonable design choices.	Successfully developed and tested a high- quality functional prototype.	10
7. Problem- Solving and Troubleshoot ing	Struggles with identifying and solving issues during printing.	Can troubleshoot common issues and find reasonable solutions.	Demonstrates critical thinking and advanced problem- solving techniques in real-world scenarios.	5

8.Industry Applications and Use Cases	Shows limited understanding of AM applications in industry.	Adequately explains common industrial applications of AM.	Demonstrates a comprehensive understanding of innovative and emerging AM applications.	5
9.Communic ation of Results and Reporting	Basic report with minimal analysis and explanation.	Clear and coherent report with thorough analysis of the results.	Detailed, clear, and professional report with insightful analysis and recommendations.	5

Category	Assessment Criteria	Performance Levels	Weightage (Marks)
Practical Skills Proficiency	Demonstrates the ability to perform job-specific tasks effectively, using relevant tools, techniques, or methodologies (e.g., operating 3D printers, using slicing software, post-processing techniques).	Fair, Good, Excellent	20
Technical Knowledge Application	Applies theoretical concepts to practical scenarios with accuracy and relevance (e.g., designing for 3D printing, material selection, AM processes, and design optimization).	Fair, Good, Excellent	15
Project Execution	Completes assigned projects or use cases demonstrating innovation, thoroughness, and skill application relevant to industry standards (e.g., creating functional prototypes, customizing designs).	Fair, Good, Excellent	25
Communication and Reporting	Clearly presents findings, solutions, or project outcomes using professional communication and documentation standards (e.g., technical reports, presentations, design documentation).	Fair, Good, Excellent	10