ANNEXURE I

	TABLE 1: MODULE WISE COURSE CONTENT AND OUTCOME				
S. No.	MODULE NAME	MODULE CONTENT	MODULE LEARNING OUTCOME	DURATIO N (HRS)	
1	Fundament als of Battery Technology	Introduction to Electric Vehicles Historical perspective	Trace the historical development of electric vehicles and identify key milestones.	9 Hrs	
		Types of EVs (BEV, PHEV, HEV, FCEV) Advantages and disadvantages of EVs EV Powertrain Components Electric motor types (AC induction, DC brushless, PMDC) Power electronics converters (inverters, rectifiers, DC-DC converters) Battery technologies (Li- ion, Ni-MH, etc.) Vehicle Dynamics and Control Vehicle dynamics principles (longitudinal and lateral dynamics) Traction control systems Stability control systems Regenerative braking	Distinguish between different types of electric vehicles (BEV, PHEV, HEV, and FCEV) based on their powertrain configurations and energy sources. Analyze the environmental, economic, and social benefits and drawbacks of electric vehicles. Recognize the major components of an electric vehicle powertrain, including electric motors, power electronics converters, and battery technologies. Develop the fundamental concepts of vehicle dynamics and the role of control systems in ensuring vehicle stability and performance. Evaluate the energy efficiency benefits of regenerative braking systems in electric vehicles.		

2	Modellina	EV 2/3Wheeler	Vehicle dynamics	9 Hrs
	of 2/3	Architecture	modeling and	
	Wheeler	2/3 Wheeler	simulation	
		vehicle Dynamics	Vehicle stability and	
		Calculation	handling	
		2/3 Wheeler	characteristics	
		vehicle Energy	Control strategies	
		Calculation	for steering, braking,	
		Design of	and acceleration	
		Specification	Energy consumption	
		Simulink Modeling	modeling and	
		of 2/3 Wheeler	estimation	
		Performance	Powertrain efficiency	
		Estimation of 2/3	optimization	
		Wheeler	Design	
			considerations for	
			2/3-wheeler EVs	

			Component selection and sizing Vehicle weight distribution and balance Use of simulation tools (e.g., MATLAB/Simulink) Model development for vehicle dynamics, powertrain, and control systems Simulation-based analysis and optimization	
3	Battery Manageme nt System (BMS)	Introduction to Battery Management Systems (BMS) Definition and purpose of a BMS in energy storage systems Overview of BMS applications in electric vehicles, grid storage, and portable devices Importance of BMS for safety, performance, and battery lifespan. Typical BMS architecture: centralized,	Voltage, current, and temperature sensing and their importance in BMS operation. Methods for accurate data acquisition and monitoring in real- time Importance of data logging for performance analysis and predictive maintenance. Compare the Environmental Impact of EVs and Traditional Vehicles	9 Hrs

modular, and distributed systems Key components: sensors, microcontrollers, thermal management systems, and communication interfaces Role of the Battery Control Unit (BCU) in system-level management and	Conduct well-to- wheel analysis to compare the full lifecycle emissions of EVs and traditional vehicles. Identify factors influencing the environmental impact of EVs, such as electricity source, battery technology, and vehicle weight. Assess the potential	
Control Unit (BCU) in system-level	technology, and vehicle weight.	
decision-making.	Assess the potential environmental	
	benefits of EVs in reducing greenhouse	

gas emissions and	
air pollution.	
estimating SOC	
SOH and SOP	
including coulomb	
based and medel	
Factors affecting the	
accuracy of	
estimation and	
strategies to	
improve reliability	
Role of these	
estimations in	
optimizing battery	
usage and	
preventing failures	

4 EV Design Venicle Platform Analyze the factors	9 Hrs
and Design influencing vehicle	
Engineerin Chassis and body platform design,	
g design including chassis and	
considerations body considerations.	
Aerodynamics and Evaluate the impact	
weight of aerodynamics and	
optimization weight optimization	
Thermal on vehicle	
Management performance and	
Systems energy efficiency.	
Battery thermal Design effective	
management thermal	
Power electronics management	
cooling systems for batteries	
Electrical System and power	
Design electronics to ensure	
Wiring harness optimal performance	
design and longevity.	
Fuse and relay Design wiring	
protection harnesses and	
Safety and Implement fuse and	
Reliability relay protection	
Safety standards systems to ensure	
and regulations the safety and	
Fault diagnosis and reliability of the	
recovery electrical system.	
Cypersecurity Understand and	
apply relevant safety	
Stanuarus anu	
design and	
manufacturing	

		Develop strategies for diagnosing and addressing faults in EV systems. Protect EVs from cybersecurity threats and implement measures to safeguard sensitive information.	
V lanufactur g echnology	Assembly Line Operations: Vehicle assembly sequence Quality control checks at each assembly stage Integration of components (battery, motor, power electronics) Testing and Validation: Performance testing (range, acceleration, top speed) Durability testing (vibration, thermal cycling, etc.) Safety testing (crash tests, fire safety) Regulatory compliance testing	Explain the assembly sequence of electric vehicles and identify key assembly stages. Apply quality control checks at different stages of the assembly process to ensure product quality. Integrate critical components such as batteries, motors, and power electronics into the vehicle assembly. Evaluate the performance of electric vehicles in terms of range, acceleration, and top speed. Assess the durability of EVs through vibration and thermal cycling tests. Conduct safety tests, including crash tests and fire safety tests, to meet regulatory standards. Ensure that EVs meet all relevant regulatory requirements.	9 Hrs

ANNEXURE II

TABLE 2: OVERALL COURSE LEARNING OUTCOME ASSESSMENT CRITERIA AND USECASES						
LEARNING	LEARNING ASSESSMENT PERFORMANCE USECASES					
OUTCOME	CRITERIA	CRITERIA.				
Explore and	Demonstrate a	Powertrain	Design and			
apply	comprehensive	Design: Design a	Development			
fundamental	skilling of	suitable	of a 2-			
principles of	electric vehicle	powertrain system	Wheeler			
electric vehicle	technology,	for a 2-wheeler	Electric			
technology.	including	EV, considering	Venicle:			
Design and	components,	ractors like motor	Powertrain			
uevelop a 2-	systems, and	power, battery	Design, Simulation			
nowertrain	interactions	transmission type	and Validation			
system.		transmission type.				
Simulate and	Apply	Simulation				
analyze the	engineering	Modeling:				
performance of	principles and	Develop accurate				
an EV	design tools to	simulation models				
powertrain.	design and	of the EV				
Validate the	develop a 2-	powertrain using				
performance of	wheeler EV	appropriate				
an EV	powertrain.	software tools.				
prototype						
through testing	Identify and	Performance				
anu	solve complex	Analysis: Analyze				
n	engineering	the simulated				
	rolated to EV	the EV in terms of				
	nowertrain	range efficiency				
	design and	and acceleration				
	optimization					
	opennización	Prototype				
	Conduct	Validation: Build				
	experiments,	and test a 2-				
	analyze data,	wheeler EV				
	and interpret	prototype to				
	results to	validate the design				
	validate the	and simulation				
	performance of	results.				
	an EV					
	prototype.					

Explore and apply fundamental principles of electric vehicle technology. Design and develop a 3- wheeler EV powertrain system.	Demonstrate a comprehensive understanding of electric vehicle technology, including components, systems, and their interactions.	Powertrain Design: Design a suitable powertrain system for a 3-wheeler EV, considering factors like motor power, battery capacity, and transmission type.	Design and Development of a 3- Wheeler Electric Vehicle: Powertrain Design, Simulation, and Validation
--	--	--	---

Simulate and	Apply	Simulation	
analyze the	engineering	Modeling:	
performance of	principles and	Develop accurate	
an EV	design tools to	simulation models	
powertrain.	design and	of the EV	
Validate the	develop a 3-	powertrain using	
performance of	wheeler EV	appropriate	
an EV	powertrain.	software tools.	
prototype			
through testing	Identify and	Performance	
and	solve complex	Analysis: Analyze	
experimentatio	engineering	the simulated	
n	problems	performance of	
	related to EV	the EV in terms of	
	powertrain	range, efficiency,	
	design and	and acceleration.	
	optimization.		
		Prototype	
	Conduct	Validation: Build	
	experiments,	and test a 3-	
	analyze data,	wheeler EV	
	and interpret	prototype to	
	results to	validate the design	
	validate the	and simulation	
	performance of	results.	
	an Ev		
	prototype.		

Demonstrate and apply fundamental principles of electric vehicle technology. Design and develop a 4- wheeler EV powertrain system	Demonstrate a comprehensive perception of electric vehicle technology, including components, systems, and their interactions.	Powertrain Design: Design a suitable powertrain system for a 4-wheeler EV, considering factors like motor power, battery capacity, and transmission type.	Design and Development of a 4- Wheeler Electric Vehicle: Powertrain Design, Simulation, and Validation
Simulate and analyze the performance of an EV powertrain. Validate the performance of an EV prototype	Apply engineering principles and design tools to design and develop a 4- wheeler EV powertrain.	Simulation Modeling: Develop accurate simulation models of the EV powertrain using appropriate software tools.	
through testing and experimentatio n	Identify and solve complex engineering	Performance Analysis: Analyze the simulated performance of	
	problems related to EV powertrain design and optimization. Conduct experiments, analyze data, and interpret results to validate the performance of an EV prototype.	the EV in terms of range, efficiency, and acceleration. Prototype Validation: Build and test a 4- wheeler EV prototype to validate the design and simulation results.	

Calculate the factors affecting EV powertrain efficiency. Analyze and identify potential efficiency improvement areas in a 2- wheeler EV. Develop and implement strategies to optimize EV powertrain efficiency.	Demonstrate knowledge of energy loss mechanisms in EV powertrains. Analyze powertrain components and systems to identify inefficiencies. Propose and evaluate strategies to improve powertrain efficiency. Conduct experiments and data analysis to validate efficiency improvements.	Calculate and analyze the efficiency of different powertrain components (motor, inverter, battery, transmission). Identify major sources of energy loss, such as resistive losses, switching losses, and mechanical losses. Propose and implement strategies to reduce losses and improve overall efficiency, such as motor control techniques, thermal management, and lightweight design. Conduct experiments to measure the impact of optimization strategies on powertrain efficiency.	Efficiency Analysis and Optimization of a 2- Wheeler Electric Vehicle Powertrain
Calculate the factors affecting EV powertrain efficiency. Analyze and identify	Demonstrate knowledge of energy loss mechanisms in EV powertrains.	Calculate and analyze the efficiency of different powertrain components (motor, inverter, battery, transmission).	Efficiency Analysis and Optimization of a 3- Wheeler Electric

potential efficiency improvement areas in a 3- wheeler EV. Develop and implement strategies to optimize EV powertrain efficiency.	Analyze powertrain components and systems to identify inefficiencies. Propose and evaluate strategies to improve powertrain efficiency. Conduct experiments and data analysis to validate efficiency improvements.	Identify major sources of energy loss, such as resistive losses, switching losses, and mechanical losses. Propose and implement strategies to reduce losses and improve overall efficiency, such as motor control techniques, thermal management, and lightweight design. Conduct experiments to measure the impact of optimization strategies on powertrain efficiency.	Vehicle Powertrain
Calculate the factors affecting EV powertrain efficiency. Analyze and identify potential efficiency improvement areas in a 4- wheeler EV. Develop and implement strategies to optimize EV powertrain efficiency.	Demonstrate knowledge of energy loss mechanisms in EV powertrains. Analyze powertrain components and systems to identify inefficiencies. Propose and evaluate strategies to improve powertrain efficiency. Conduct experiments and data analysis to validate efficiency improvements.	Calculate and analyze the efficiency of different powertrain components (motor, inverter, battery, transmission). Identify major sources of energy loss, such as resistive losses, switching losses, and mechanical losses. Propose and implement strategies to reduce losses and improve overall efficiency, such as motor control techniques, thermal management, and lightweight design. Conduct experiments to measure the impact of optimization strategies on	Efficiency Analysis and Optimization of a 4- Wheeler Electric Vehicle Powertrain

powertrain efficiency.			
		powertrain efficiency.	

Understand the design considerations for in-wheel hub motor fixtures. Utilize CAD software to design and model mechanical fixtures. Apply manufacturing techniques to fabricate the designed fixture.	Demonstrate knowledge of mechanical design principles and manufacturing processes. Design a suitable fixture for the in- wheel hub motor, considering factors like weight, strength, and vibration isolation. Analyze the design for potential failures and optimize the design for performance. Fabricate the fixture using appropriate manufacturing techniques and assemble it with	Create a detailed 3D CAD model of the fixture. Conduct FEA to analyze the stress distribution and structural integrity of the fixture. Select appropriate manufacturing processes (e.g., machining, 3D printing) for the fixture components. Fabricate the fixture components and assemble them into a complete unit.	Design and Fabrication of a Mechanical Fixture for In- Wheel Hub Motor
Understand the principles of mechanical power transmission systems. Design a suitable transmission system for a 2- wheeler EV. Analyze the performance of the designed transmission system.	Knowledge and Understanding: Demonstrate knowledge of gear design, belt drive systems, and chain drive systems. Design Skills: Design a transmission system that meets the specific requirements of a 2-wheeler EV. Analysis Skills: Analyze the performance of the transmission	Transmission System Selection: Select an appropriate transmission type (belt, chain, or gear) based on factors like efficiency, cost, and noise. Gear Ratio Calculation: Calculate the required gear ratios to achieve desired vehicle performance. CAD Modeling and Design: Create detailed 3D CAD models of the	Design and Development of a Mechanical Transmission System for a 2-Wheeler Electric Vehicle

	system in terms of efficiency, noise, and vibration. Practical Skills: Fabricate and assemble the transmission system.	transmission components. Fabrication and Assembly: Fabricate and assemble the transmission system, ensuring proper alignment and lubrication.	
Understand the principles of lithium-ion battery technology. Design and assemble a 7S5P battery pack. Implement a Battery Management System (BMS) for battery safety and performance.	Knowledge and Understanding : Demonstrate knowledge of battery chemistry, cell characteristics, and safety considerations. Design Skills: Design a battery pack considering factors like cell selection, configuration, and thermal management. Practical Skills: Assemble the battery pack and integrate a BMS. Problem- Solving Skills: Troubleshoot and resolve issues related to battery pack assembly and testing.	Cell Selection: Select appropriate lithium-ion cells based on capacity, voltage, and discharge rate. Battery Pack Configuration: Design and assemble a 7S5P battery pack, ensuring proper cell balancing and wiring. BMS Integration: Integrate a BMS to monitor and control battery voltage, current, and temperature. Safety Considerations: Implement safety measures, such as thermal runaway protection and overcharge/overdi scharge prevention.	Design and Assembly of a 7S5P Lithium- ion Battery Pack
Understand the specific requirements of a 3-wheeler EV	Knowledge and Understanding : Demonstrate knowledge of	Transmission Type Selection: Select an appropriate transmission type	Design and Development of a Mechanical

transmission	gear design,	(belt, chain, or	Transmission
system.	Delt drive	gear) based on	System for a
Design and	systems, and	venicie load,	5-wheeler
	chain unve	officioney	Vohiclo
select suitable	systems,	considerations	venicie
the	3-wheeler	considerations.	
transmission	applications	Coar Patio	
cyctom	applications.		
System.	Design Skills		
Analyza tha	Design a	required dear	
nerformance of	transmission	ratios to achieve	
the designed	system that	desired vehicle	
transmission	meets the	performance and	
system.	specific power	optimize	
System	and torque	efficiency.	
	requirements		
	of a 3-wheeler	CAD Modeling and	
	EV.	Design: Create	
		detailed 3D CAD	
	Analysis Skills:	models of the	
	Analyze the	transmission	
	performance of	components,	
	the	considering factors	
	transmission	like stress, fatigue,	
	system in	and wear.	
	terms of		
	efficiency,	Fabrication and	
	noise,	Assembly:	
	vibration, and	Fabricate and	
	durability.	assemble the	
		transmission	
	Practical Skills:	system, ensuring	
	Fabricate and	proper alignment,	
	assemble the	lubrication, and	
	transmission	sealing.	
	system,		
	ensuring		
	proper		
Understand the	Knowledge and	Transmission Type	Design and
snecific	Understanding	Selection: Select	Develonment
requirements of	: Demonstrate	an annronriate	of a
a 4-wheeler FV	knowledge of	transmission type	Mechanical
transmission	gear design.	(belt, chain, or	Transmission
svstem.	belt drive	gear) based on	System for a
	systems, and	vehicle load,	4-Wheeler
Design and	chain drive	terrain, and	Electric
select suitable	systems,	,	Vehicle
components for	especially for		

the	4-wheeler	efficiency	
transmission	applications.	considerations.	
System	Design Skills:	Gear Ratio	
Analyze the	Design a	Calculation:	
performance of	transmission	Calculate the	
the designed	system that	required gear	
transmission	meets the	ratios to achieve	
system.	specific power	desired vehicle	
	and torque	performance and	
	requirements	optimize	
	of a 4-wheeler	efficiency.	
	LV.	CAD Modeling and	
	Analysis Skills:	Design: Create	
	Analyze the	detailed CAD	
	performance of	models of the	
	the	transmission	
	transmission	components,	
	system in	considering factors	
	terms of	like stress, fatigue,	
	efficiency,	and wear.	
	noise,	Esta institute and	
	vibration, and	Fabrication and	
	uurabiiity.	Assembly.	
	Practical Skills	assemble the	
	Fabricate and	transmission	
	assemble the	system, ensuring	
	transmission	proper alignment,	
	system,	lubrication, and	
	ensuring	sealing.	
	proper		
	alignment,		
	lubrication,		
Understand the	Knowledge and	Efficiency	Efficiency
factors	Understanding	Modeling: Develop	Analysis of a
affecting the	: Demonstrate	a model to	2-Wheeler
efficiency of EV	knowledge of	simulate the	Electric
transmission	mechanical	efficiency of the	Vehicle
systems.	power	transmission	Transmission
	transmission	system under	System
Analyze the	systems and	various operating	
efficiency of	their losses.	conditions.	
transmission	Analytical	Experimental	
types (helt	Skille: Analyze	Testina: Design	
chain, gear)	the efficiency	and conduct	
	of different	experiments to	
	transmission	measure the input	

Propose strategies to improve transmission	components (gears, bearings, belts, chains).	and output power of the transmission system.	
efficiency.	Problem- Solving Skills: Identify and address inefficiencies in the transmission system.	Loss Analysis: Identify and quantify the major sources of power loss, such as frictional losses, mechanical losses, and windage losses.	
	Experimental Skills: Conduct experiments to measure power losses and efficiency.	Efficiency Optimization: Propose and evaluate strategies to improve transmission efficiency, such as lubrication optimization, gear design improvements, and material selection.	
Understand the key performance metrics of electric vehicle powertrains. Develop test procedures to evaluate powertrain performance.	Knowledge and Understanding : Demonstrate knowledge of EV powertrain components, their interactions, and performance metrics.	Test Plan Development: Develop a comprehensive test plan to evaluate powertrain performance metrics, such as acceleration, top speed, range, and energy efficiency.	Performance Evaluation of an Electric Vehicle Powertrain
Analyze and interpret powertrain performance data.	Skills: Design and conduct experiments to measure powertrain performance. Data Analysis Skills: Analyze and interpret	Data Acquisition and Analysis: Use appropriate instrumentation and data acquisition techniques to collect data on motor speed, torque, voltage,	

	experimental data to evaluate powertrain performance. Problem- Solving Skills: Identify and troubleshoot issues that may affect powertrain performance.	current, and temperature. Performance Metrics Calculation: Calculate key performance metrics, such as motor efficiency, inverter efficiency, and overall vehicle efficiency. Performance Optimization: Identify areas for improvement in powertrain performance and propose optimization strategies.	
Understand the principles of electric vehicle conversion. Design and select suitable components for a 2- wheeler EV conversion. Integrate the new components into an existing 2- wheeler vehicle.	Knowledge and Understanding : Demonstrate knowledge of electric vehicle components, power electronics, and battery technology. Design Skills: Design a suitable electric powertrain for the 2-wheeler vehicle, considering factors like weight distribution, motor placement, and battery location.	Component Selection: Select appropriate components, such as motor, controller, battery, and charger, based on vehicle specifications and performance requirements. Vehicle Modification: Modify the vehicle's frame and body to accommodate the new components, ensuring proper weight distribution and structural integrity. Wiring and Integration: Wire the electric components,	Retrofitting of 2-Wheeler Electric Vehicle

Practical Skills: Install and wire the electric powertrain components, ensuring proper integration with the existing vehicle.	ensuring proper connections and insulation. Performance Testing: Test the converted vehicle's performance, including range, speed, acceleration, and braking.	
Problem- Solving Skills: Troubleshoot and resolve issues that may arise during the conversion process.		

C	TABLE 3: LIST OF FINAL PROJECTS (15 PROJECTS THAT OMPREHENSIVELY COVER ALL THE LEARNING OUTCOME)
SL. NO.	Industry Use Case
1	Design and Development of a 2-Wheeler Electric Vehicle: Powertrain Design, Simulation, and Validation
2	Design and Development of a 3-Wheeler Electric Vehicle: Powertrain Design, Simulation, and Validation
3	Design and Development of a 4-Wheeler Electric Vehicle: Powertrain Design, Simulation, and Validation
4	Efficiency Analysis and Optimization of a 2-Wheeler Electric Vehicle Powertrain
5	Efficiency Analysis and Optimization of a 3-Wheeler Electric Vehicle Powertrain
6	Efficiency Analysis and Optimization of a 4-Wheeler Electric Vehicle Powertrain
7	Design and Fabrication of a Mechanical Fixture for In-Wheel Hub Motor
8	Design and Development of a Mechanical Transmission System for a 2-Wheeler Electric Vehicle
9	Design and Assembly of a 7S5P Lithium-ion Battery Pack
10	Design and Development of a Mechanical Transmission System for a 3-Wheeler Electric Vehicle

11	Design and Development of a Mechanical Transmission System for a 4-Wheeler Electric Vehicle
12	Communication and Monitoring of a 7S5P Lithium-ion Battery Pack
13	Efficiency Analysis of a 2-Wheeler Electric Vehicle Transmission System
14	Performance Evaluation of an Electric Vehicle Powertrain
15	Retrofitting of 2-Wheeler Electric Vehicle

ANNEXURE III

TABLE 4: COURSE ASSESSMENT RUBRICS (TOTAL MARKS: 70)					
ASSESSMENT	DES BELO	DESCRIBE THE CRITERIA OF THE BELOW CATEGORY PERFORMANCE			
	FAIR	GOOD	EXCELLENT	PIARAS	
Knowledge and understanding	Recalls key definitions and concepts.	Explains concepts in a clear and concise manner.	Applies concepts to solve problems and answer questions in a comprehensive and insightful manner.	20	
Application and Analysis	Attempts to apply learn to solve problems, even if the solution is not entirely accurate.	Applies knowledge to solve problems correctly, demonstrating a clear understanding of the concepts involved.	Critically analyzes problems, identifies relevant concepts, and applies knowledge to develop creative and effective solutions.	25	
Evaluation and Synthesis	Identifies relevant information from various sources.	Analyzes and critiques information from various sources, identifying strengths and weaknesses.	Synthesizes information from various sources to form well- founded arguments and evidence-based conclusions.	15	
Communication Skills	Presents information in a clear and organized manner, but may lack detail or clarity.	Presents information in a clear, concise, and well- organized manner, using appropriate language and terminology.	Presents information in a clear, concise, and well- organized manner, using sophisticated language and terminology to engage the audience.	10	

Category	Assessment Criteria	Performance Levels	Weightage (Marks)
Practical Skills Proficiency	Demonstrates ability to perform job-specific tasks effectively, using relevant tools, techniques, or methodologies	Good, Fair, Excellent	20
Technical Knowledge Application	Applies theoretical concepts to practical scenarios with accuracy	Fair, Good, Excellent	10

	and relevance		
Project Execution	Completes assigned projects or use cases demonstrating innovation, thoroughness, and skill application relevant to industry standards.	Fair, Good, Excellent	30
Communication and Reporting	Clearly presents findings, solutions, or project outcomes using professional communication and documentation standards (e.g., reports, presentations).	Fair, Good, Excellent	10

Level	Description
Fair (50%- 64%)	Recalls basic definitions and concepts but struggles with application. Attempts to apply knowledge but often makes mistakes or lacks depth in analysis. Identifies some relevant information but struggles to analyze and synthesize it effectively. Presents information in a basic manner, lacking clarity and organization.
Good (65%- 79%)	Explains concepts clearly and concisely, demonstrating a solid understanding. Applies knowledge to solve problems correctly, but may lack critical thinking and innovative solutions. Analyzes information effectively and identifies key points. Presents information clearly and concisely, using appropriate language and terminology.
Excellen t (80%- 100%)	Applies concepts to solve complex problems creatively and insightfully. Critically analyzes information, identifies underlying assumptions, and develops innovative solutions. Synthesizes information from multiple sources to form well-founded arguments and evidence-based conclusions. Presents information in a clear, concise, and engaging manner, using sophisticated language and terminology.