

Prompt Engineering

Course

Learning

Objectives

● Develop a strong foundation in Generative AI concepts,

historical context, and diverse generative models.

● Acquire hands-on coding expertise in TensorFlow and PyTorch

for model training, evaluation, debugging, and optimization.

● Explore advanced generative models like conditional GANs,

unsupervised learning, and novel architectures.

● Apply generative AI techniques to diverse domains, including

image manipulation, text-to-image synthesis, and creative

applications.

● Address ethical challenges, biases, and societal impacts, and

gain proficiency in deploying generative models responsibly.

Course

Outcomes

● Comprehend Generative AI fundamentals, historical evolution,

and various model types for practical application.

● Develop practical skills through coding exercises, model

training, and optimization using TensorFlow and PyTorch.

 ● Analyse the working principles of advanced generative models

and address associated challenges.

● Apply generative AI techniques effectively in real-world

scenarios, demonstrating creativity and versatility.

● Recognize and address ethical considerations, biases, and

societal impacts, adopting responsible AI practices.

Course Duration: 45 Hours

Module Wise Course Content and

Outcome

Module Name

Module Content

Learning

Outcome

Duration

(hrs)

Module1:

Introduction to

Generative AI

Overview of

Generative AI.

Historical context

and evolution.

Types of generative

models: GANs,

VAEs, etc.

Use cases and

applications.

Participants will gain

a foundational

understanding of

generative AI

concepts and its

historical context.

4

Module 2:

Fundamentals of

Generative Models

In-depth exploration

of GANs and VAEs.

Architectural

components and

working principles.

Mathematical

foundations and loss

functions.

Case studies

illustrating successful

applications.

Participants will

comprehend the

working principles

and differences

between GANs and

VAEs.

6

Module3:

Implementation

with TensorFlow

and PyTorch

Hands-on

coding

exercises with

TensorFlow.

Practical

implementation using

PyTorch.

Model training

and evaluation.

Debugging and

optimization

techniques.

Participants will gain

practical skills in

implementing

generative models

using popular

frameworks.

8

Module 4:

Advanced

Generative Models

Conditional GANs

and their

applications.

Unsupervised learning

and generative

clustering. Novel

architectures and

advancements in

generative models.

Challenges and

considerations.

Participants will

explore advanced

generative models,

understand their

applications, and be

aware of challenges.

6

Module5:

Application Domains

Image generation

and manipulation.

Text-to-image

synthesis. Style

transfer in images.

Creative applications in

art and design.

Participants will

apply generative

models to various

domains, fostering

creativity and

innovation.

7

Module6:

Performance

Metrics and

Evaluation

Metrics for

evaluating

generative model

performance.

Challenges in

assessing generated

content.

Real-world

evaluation

strategies.

Participants will

understand how

to measure and

evaluate the

performance of

generative

models.

4

Module7: Ethical

Considerations in

Generative AI

Bias and fairness in

generative models.

Ethical challenges

and societal impacts.

Responsible AI practices.

Participants will

grasp the ethical

considerations

and

responsibilities

associated with

generative AI.

3

Module8:

Deployment and

Integration

Strategies for

deploying generative

models.

Integration into existing

systems. Deployment

challenges and

solutions.

Participants will

learn how to

deploy and

integrate

generative

models into

practical

applications.

5

Module9: Project

 Work

and Case

Studies

Work on generative AI

projects. Analysis of case

studies. Peer review and

feedback.

Participants will

apply their

knowledge to real-

world projects and

learn from case

studies.

2

Module 10: Future

Trends and

Emerging

Technologies

Current trends in

generative AI.

Emerging technologies

and research

directions.

Participants will stay

informed about the

latest trends and

advancements in the

field.

2

Course Duration: 45 Hours

Test Projects:

Use Case 1: Text Classification for Customer Support Tickets

Description:

In this use case, we aim to implement a text classification system for customer

support tickets. The goal is to automatically categorize incoming support tickets

into predefined categories, such as technical issues, billing inquiries, and general

feedback. The system will enhance the efficiency of the customer support process

by automating the ticket categorization process.

Learning Outcome:

By working on this project, you will gain experience and understanding in the following

areas:

1. Data Collection:

- Gathering a labeled dataset of historical customer support tickets with

predefined categories.

2. Data Preprocessing:

- Cleaning and preprocessing text data, handling stopwords, and

tokenization.

3. Model Selection:

- Choosing a pre-trained text classification model from Hugging Face's

Transformers library.

4. Fine-Tuning:

- Fine-tuning the selected model on the collected dataset to adapt it to the

specific domain of customer support tickets.

5. Integration:

- Integrating the trained model into the company's ticketing system or

customer support platform.

6. Inference:

- Using the model to automatically classify incoming support tickets into

relevant categories in real-time.

Tasks:

1. Data Collection:

- Gather a labeled dataset of historical customer support tickets.

2. Data Preprocessing:

- Clean and preprocess text data.

- Handle stopwords and perform tokenization.

3. Model Selection:

- Choose a pre-trained text classification model from Hugging Face's

Transformers library.

4. Fine-Tuning:

- Fine-tune the selected model on the collected dataset.

5. Integration:

- Integrate the trained model into the company's ticketing system or

customer support platform.

6. Inference:

- Use the model to automatically classify incoming support tickets in real-

time.

Evaluation:

The evaluation will consist of the following components:

1. Accuracy Metrics:

- Measure the accuracy of the model in correctly classifying support tickets.

2. Live Evaluation:

- Conduct a live session where you explain your approach, the implemented

features, and demonstrate the system's effectiveness.

3. Feedback:

- Receive feedback on your implementation, highlighting strengths and areas

for improvement.

This project aims to showcase your proficiency in implementing text classification

for real-world applications, specifically in the context of customer support tickets.

The evaluation provides an opportunity to receive feedback and refine your skills

in natural language processing and model integration.

Use Case 2: Spam Mail Filtering

Description:

This use case focuses on implementing a spam mail filtering system to

automatically identify and filter out unwanted spam emails. The goal is to enhance

the user experience by reducing the influx of irrelevant and potentially harmful

emails. The system will leverage machine learning techniques to classify emails as

either spam or legitimate based on their content.

Learning Outcome:

By working on this project, you will gain experience and understanding in the

following areas:

1. Data Collection:

- Gathering a labeled dataset of emails, with clear indications of whether each

email is spam or legitimate.

2. Data Preprocessing:

- Cleaning and preprocessing email text data.

- Handling issues like HTML tags, special characters, and email headers.

3. Model Selection:

- Choosing a suitable pre-trained text classification model, such as a Naive

Bayes classifier or a machine learning model from Hugging Face's

Transformers library.

4. Fine-Tuning:

- Fine-tuning the selected model on the collected dataset to adapt it to the

characteristics of spam and legitimate emails.

5. Evaluation:

- Assessing the model's performance using metrics such as precision, recall,

and F1 score to ensure effective spam detection.

Tasks:

1. Data Collection:

- Gather a labeled dataset of emails with clear indications of spam or

legitimacy.

2. Data Preprocessing:

- Clean and preprocess email text data.

- Handle issues like HTML tags, special characters, and email headers.

3. Model Selection:

- Choose a pre-trained text classification model suitable for spam mail

filtering.

4. Fine-Tuning:

- Fine-tune the selected model on the collected dataset to adapt it to spam

and legitimate email patterns.

5. Evaluation:

- Assess the model's accuracy, precision, recall, and F1 score to measure its

effectiveness in classifying emails.

Evaluation:

The evaluation will consist of the following components:

1. Accuracy Metrics:

- Measure the accuracy of the model in correctly classifying emails as spam

or legitimate.

2. Live Evaluation:

- Conduct a live session where you explain your approach, the implemented

features, and demonstrate the system's effectiveness.

3. Feedback:

- Receive feedback on your implementation, highlighting strengths and areas

for improvement.

This project aims to showcase your ability to implement a practical spam mail

filtering solution using machine learning techniques. The evaluation provides an

opportunity to demonstrate the effectiveness of your model and receive valuable

feedback for improvement.

Use Case 3: Toxicity Detection in Online Comments

Description:

This use case involves the implementation of a toxicity detection system for online

comments. The objective is to automatically identify and flag comments containing

offensive, harmful, or inappropriate content. The system will use natural language

processing (NLP) techniques and machine learning models to categorize comments

based on their toxicity levels, contributing to a safer and more respectful online

environment.

Learning Outcome:

By engaging in this project, you will gain experience and understanding in the

following areas:

1. Data Collection:

- Gathering a labeled dataset of online comments, indicating the toxicity

levels of each comment.

2. Data Preprocessing:

- Cleaning and preprocessing text data, addressing challenges such as

handling profanity, slang, and diverse linguistic expressions.

3. Model Selection:

- Choosing an appropriate pre-trained text classification model, such as a

transformer model from Hugging Face's library.

4. Fine-Tuning:

- Fine-tuning the selected model on the collected dataset to enhance its

ability to detect different forms of toxicity.

5. Evaluation:

- Assessing the model's performance using metrics like precision, recall, and

F1 score to ensure accurate toxicity detection.

Tasks:

1. Data Collection:

- Collect a labeled dataset of online comments with annotations indicating

toxicity levels.

2. Data Preprocessing:

- Clean and preprocess text data, addressing challenges associated with

offensive language, slang, and varied linguistic expressions.

3. Model Selection:

- Choose a pre-trained text classification model suitable for toxicity detection.

4. Fine-Tuning:

- Fine-tune the selected model on the collected dataset to improve its

performance in identifying toxic comments.

5. Evaluation:

- Evaluate the model's accuracy, precision, recall, and F1 score to measure

its effectiveness in detecting toxicity.

Evaluation:

The evaluation will consist of the following components:

1. Accuracy Metrics:

- Measure the accuracy of the model in correctly classifying comments based

on toxicity levels.

2. Live Evaluation:

- Conduct a live session where you explain your approach, showcase

implemented features, and demonstrate the system's effectiveness.

3. Feedback:

- Receive feedback on your implementation, highlighting strengths and areas

for improvement.

This project aims to demonstrate your ability to develop a practical solution for

toxicity detection in online comments using natural language processing and

machine learning. The evaluation provides an opportunity to showcase the

effectiveness of your model and receive valuable feedback for further

enhancement.

Use Case 4: Automated Customer Support Chatbot

Description:

This use case involves the development of an automated customer support chatbot

to enhance user experience and streamline customer query resolution. The

chatbot will use natural language processing (NLP) and machine learning

techniques to understand and respond to customer queries, providing instant

assistance and reducing the workload on human customer support agents.

Learning Outcome:

By engaging in this project, you will gain experience and understanding in the

following areas:

1. Data Collection:

- Gathering a dataset of historical customer interactions, including queries

and corresponding resolutions.

2. Intent Recognition:

- Implementing techniques for recognizing the intent behind customer

queries, such as identifying whether the user is seeking information,

troubleshooting, or requesting assistance.

3. Entity Recognition:

- Incorporating entity recognition to extract relevant information from

customer queries, such as order numbers, product names, or account

details.

4. Dialog Management:

- Building a dialog management system to maintain context and provide

coherent responses throughout the conversation.

5. Model Selection:

- Choosing or building a suitable natural language understanding (NLU)

model to comprehend customer queries accurately.

Tasks:

1. Data Collection:

- Collect a dataset of historical customer interactions, including a variety of

queries and resolutions.

2. Intent Recognition:

- Implement techniques for recognizing the intent behind customer queries

to understand the user's purpose.

3. Entity Recognition:

- Develop entity recognition capabilities to extract relevant information from

customer queries.

4. Dialog Management:

- Build a dialog management system to maintain context and provide

coherent responses throughout the conversation.

5. Model Selection:

- Choose or build a natural language understanding (NLU) model capable of

accurately comprehending customer queries.

Evaluation:

The evaluation will consist of the following components:

1. Accuracy Metrics:

- Measure the accuracy of the chatbot in correctly recognizing intents and

extracting entities from customer queries.

2. Live Evaluation:

- Conduct a live session where you demonstrate the chatbot's effectiveness

in understanding and responding to user queries.

3. Feedback:

- Receive feedback on your chatbot's implementation, highlighting strengths

and areas for improvement.

This project aims to showcase your ability to develop a functional and efficient

automated customer support chatbot. The evaluation provides an opportunity to

demonstrate the effectiveness of your chatbot and receive valuable feedback for

further refinement.

Use Case 5: Content Organization for News Aggregators Using Text

Clustering

Description:

This use case involves implementing a content organisation system for news

aggregators using text clustering techniques. The goal is to automatically group

similar news articles together, providing users with a more organised and

streamlined reading experience. Text clustering will be employed to group articles

based on their content similarity, helping users discover related news stories more

efficiently.

Learning Outcome:

By engaging in this project, you will gain experience and understanding in the

following areas:

1. Data Collection:

- Gathering a diverse dataset of news articles from various sources.

2. Text Preprocessing:

-Cleaning and preprocessing text data, handling tasks such as tokenization,

stemming, and removing stop words.

3. Feature Extraction:

- Extracting relevant features from the news articles, such as TF-IDF (Term

Frequency-Inverse Document Frequency) vectors.

4. Text Clustering:

- Implementing text clustering algorithms, such as K-means or hierarchical

clustering, to group similar articles together.

5. Evaluation:

- Assessing the performance of the text clustering model, using metrics like

silhouette score or coherence score.

Tasks:

1. Data Collection:

- Collect a diverse dataset of news articles from various sources, ensuring

representation across different topics.

2. Text Preprocessing:

- Clean and preprocess the text data, including tasks like tokenization,

stemming, and removing stop words.

3. Feature Extraction:

- Extract relevant features from the news articles, such as TF-IDF vectors, to

represent the content numerically.

4. Text Clustering:

- Implement a text clustering algorithm, selecting an appropriate method for

grouping similar articles.

5. Evaluation:

- Evaluate the effectiveness of the text clustering model using suitable

metrics to measure the quality of article groupings.

Evaluation:

The evaluation will consist of the following components:

1. Cluster Quality Metrics:

- Measure the quality of text clusters using metrics such as silhouette score

or coherence score.

2. Live Evaluation:

- Conduct a live session where you demonstrate the effectiveness of the

content organization system for news aggregators.

3. Feedback:

- Receive feedback on your implementation, highlighting strengths and areas

for improvement.

This project aims to showcase your ability to implement an efficient content

organization system for news aggregators using text clustering techniques. The

evaluation provides an opportunity to demonstrate the effectiveness of your

clustering model and receive valuable feedback for further refinement.

Use Case 6: Meeting Transcript Summarization

Description:

This use case involves developing a meeting transcript summarization system to

automatically generate concise summaries of meeting discussions. The objective

is to enhance productivity by providing participants with a condensed version of

key points, action items, and decisions made during the meeting. The system will

employ natural language processing (NLP) techniques to analyze and summarize

the content of meeting transcripts.

Learning Outcome:

By engaging in this project, you will gain experience and understanding in the

following areas:

1. Data Collection:

- Gathering a dataset of meeting transcripts with associated summaries or

key points.

-

2. Text Preprocessing:

- Cleaning and preprocessing meeting transcript data, addressing issues such

as removing irrelevant information and handling variations in language.

3. Feature Extraction:

- Extracting relevant features from the meeting transcripts, such as

identifying key sentences or important phrases.

4. Abstractive Summarization:

- Implementing abstractive summarization techniques to generate concise

and coherent summaries.

5. Evaluation:

- Assessing the quality of generated summaries using metrics such as ROUGE

(Recall-Oriented Understudy for Gisting Evaluation).

Tasks:

1. Data Collection:

- Collect a dataset of meeting transcripts with associated summaries or key points.

2. Text Preprocessing:

- Clean and preprocess meeting transcript data, removing irrelevant

information and addressing variations in language.

3. Feature Extraction:

- Extract relevant features from meeting transcripts, identifying key

sentences or important phrases.

4. Abstractive Summarization:

- Implement abstractive summarization techniques to generate concise and

coherent meeting summaries.

-

5. Evaluation:

- Evaluate the quality of generated summaries using metrics like ROUGE to

measure the effectiveness of the summarization system.

Evaluation:

The evaluation will consist of the following components:

1. ROUGE Metrics:

- Measure the precision, recall, and F1 score using ROUGE metrics to evaluate

the quality of generated summaries.

2. Live Evaluation:

- Conduct a live session where you demonstrate the effectiveness of the

meeting transcript summarization system.

3. Feedback:

- Receive feedback on your implementation, highlighting strengths and areas for

improvement.

This project aims to showcase your ability to implement an abstractive

summarization system for meeting transcripts, providing a valuable tool for

efficient information retrieval and decision-making. The evaluation provides an

opportunity to demonstrate the effectiveness of your summarization model and

receive valuable feedback for further refinement.

Use Case 7: Medical Report Summarization

Description:

This use case involves the development of a medical report summarization system

to automatically generate concise summaries of complex medical reports. The

objective is to assist healthcare professionals by providing succinct and relevant

information from lengthy medical documents, enabling quicker decision-making

and enhancing overall patient care. Natural language processing (NLP) techniques and

transformer- based models will be employed for accurate summarization.

Learning Outcome:

By engaging in this project, you will gain experience and understanding in the following

areas:

1. Data Collection:

- Gathering a dataset of diverse medical reports, including radiology reports,

pathology reports, and clinical notes.

2. Text Preprocessing:

- Cleaning and preprocessing medical report data, addressing challenges

specific to healthcare terminology and jargon.

3. Feature Extraction:

- Extracting relevant features from medical reports, such as key findings,

diagnoses, and treatment plans.

4. Model Selection and Fine-Tuning:

- Choosing a transformer-based model from Hugging Face's Transformers

library.

- Fine-tuning the selected model on the collected medical report dataset.

5. Abstractive Summarization:

- Implementing abstractive summarization techniques using the chosen

transformer- based model to generate concise and accurate summaries.

6. Evaluation:

- Assessing the quality of generated summaries using domain-specific

evaluation metrics, considering medical accuracy and relevance.

Tasks:

1. Data Collection:

- Collect a diverse dataset of medical reports, covering various medical

specialties.

2. Text Preprocessing:

- Clean and preprocess medical report data, addressing challenges specific to

healthcare terminology and jargon.

3. Feature Extraction:

- Extract relevant features from medical reports, such as key findings,

diagnoses, and treatment plans.

4. Model Selection and Fine-Tuning:

- Choose a transformer-based model from Hugging Face's Transformers

library.

- Fine-tune the selected model on the collected medical report dataset.

5. Abstractive Summarization:

- Implement abstractive summarization techniques using the chosen and

fine-tuned transformer-based model.

6. Evaluation:

- Evaluate the quality of generated summaries using domain-specific metrics,

ensuring medical accuracy and relevance.

Evaluation:

The evaluation will consist of the following components:

1. Domain-Specific Metrics:

- Measure the accuracy and relevance of generated medical report

summaries using metrics tailored to the healthcare domain.

2. Live Evaluation:

- Conduct a live session where you demonstrate the effectiveness of the

medical report summarization system.

3. Feedback:

- Receive feedback on your implementation, highlighting strengths and areas

for improvement.

This project aims to showcase your ability to develop a practical and accurate

medical report summarization system using transformer-based models. The

evaluation provides an opportunity to demonstrate the effectiveness of your

summarization model and receive valuable feedback for further refinement.

Use Case 8: Content Tagging for E-learning

Description:

This use case involves the implementation of a content tagging system for e-

learning platforms, aiming to enhance content organization and facilitate

personalized learning experiences. The system will utilize natural language

processing (NLP) techniques to automatically tag educational content, such as

articles, videos, and quizzes, with relevant topics, difficulty levels, and learning

objectives. This tagging system will help learners discover content aligned with

their preferences and proficiency levels.

Learning Outcome:

By engaging in this project, you will gain experience and understanding in the

following areas:

1. Data Collection:

- Gathering a diverse dataset of educational content from various subjects

and difficulty levels.

2. Text Preprocessing:

- Cleaning and preprocessing educational content, handling tasks such as

tokenization and removing irrelevant information.

3. Topic Modeling:

- Implementing topic modeling techniques to identify key topics within

educational content.

4. Difficulty Level Identification:

- Developing algorithms to assess the difficulty level of educational content

based on factors such as vocabulary complexity and concept intricacy.

5. Tagging System Integration:

- Integrating the content tagging system into an e-learning platform,

ensuring seamless tagging of new content.

Tasks:

1. Data Collection:

- Collect a diverse dataset of educational content, including articles, videos,

and quizzes, from various subjects and difficulty levels.

2. Text Preprocessing:

- Clean and preprocess educational content, including tasks such as

tokenization and removing irrelevant information.

3. Topic Modeling:

- Implement topic modeling techniques to identify key topics within the

educational content.

4. Difficulty Level Identification:

- Develop algorithms to assess the difficulty level of educational content

based on factors such as vocabulary complexity and concept intricacy.

5. Tagging System Integration:

Integrate the content tagging system into an e-learning platform, ensuring

seamless tagging of new educational content.

Evaluation:

The evaluation will consist of the following components:

1. Tagging Accuracy:

- Measure the accuracy of the content tagging system in assigning relevant

tags to educational content.

2. User Feedback:

- Gather feedback from users, including learners and educators, on the

effectiveness and usability of the content tagging system.

3. Live Evaluation:

- Conduct a live session where you demonstrate the content tagging system

in action, showcasing its impact on personalized learning experiences.

This project aims to showcase your ability to develop an effective content tagging

system for e-learning platforms, enhancing content discoverability and supporting

personalized learning journeys. The evaluation provides an opportunity to

demonstrate the system's accuracy and gather valuable feedback for further

refinement.

Use Case 9: Handwriting Recognition

Description:

Implementation of a handwriting recognition system to convert handwritten text

into digital format, enhancing user interactions with various applications. The

system employs machine learning techniques to accurately interpret and

transcribe handwritten input.

Learning Outcome:

Engage in this project to gain experience and understanding in the following areas:

1. Dataset Collection:

- Gather a diverse dataset of handwritten samples, encompassing different

styles, languages, and complexities.

2. Preprocessing and Data Augmentation:

- Implement preprocessing techniques to enhance the quality of handwritten

samples for training.

- Apply data augmentation strategies to improve the model's adaptability to

variations in writing styles and conditions.

3. Model Architecture:

- Develop a sophisticated deep learning model for handwriting recognition,

balancing accuracy and efficiency.

- Explore and experiment with different architectures to optimize recognition

performance.

4. Language Support:

- Expand language support to accommodate a wider user base, considering

both widely spoken languages and niche linguistic requirements.

- Incorporate mechanisms for easy integration of additional languages based

on user feedback.

5. User Interface Integration:

- Integrate the handwriting recognition model into user interfaces, enabling

seamless interaction with applications.

- Continuously refine the user interface based on user experience feedback

to enhance accessibility and user-friendliness.

Tasks:

1. Dataset Collection:

- Collect a diverse dataset of handwritten samples covering various styles,

languages, and complexities.

2. Preprocessing and Data Augmentation:

- Implement preprocessing techniques to enhance the quality of handwritten

samples.

- Apply data augmentation strategies to improve the model's adaptability.

3. Model Architecture:

- Develop a deep learning model for handwriting recognition, experimenting

with different architectures.

4. Language Support:

- Expand language support to cater to a diverse user base.

5. User Interface Integration:

- Integrate the handwriting recognition model into user interfaces for

seamless interaction.

Evaluation:

1. Recognition Accuracy:

- Measure the accuracy of the handwriting recognition system with diverse

handwritten samples.

- Conduct regular evaluations to maintain and improve accuracy.

2. User Feedback:

- Gather feedback from users on recognition accuracy, speed, and overall

user experience.

- Implement user-suggested enhancements and address issues to optimize

system performance.

3. Real-world Applications:

- Showcase successful real-world applications, such as note-taking apps,

form processing, and digital annotation tools.

- Explore partnerships and collaborations for integrating the technology into

various industries.

Develop an efficient handwriting recognition system that accurately transcribes

handwritten input into digital format, improving user interactions and enabling

diverse real-world applications. The evaluation provides insights into accuracy,

user feedback, and practical applications for further refinement and development.

Use Case 10: Sentiment Analysis for Product Reviews Description:

In this use case, the objective is to develop a sentiment analysis system for

product reviews. The goal is to automatically determine the sentiment expressed

in reviews, categorizing them as positive, negative, or neutral. This system will

aid businesses in understanding customer opinions, improving products, and

addressing issues promptly.

Learning Outcome:

By engaging in this project, you will acquire expertise in the following areas:

1. Data Collection:

- Assemble a labeled dataset comprising product reviews with associated

sentiment labels.

2. Data Preprocessing:

- Clean and preprocess text data, handling issues like punctuation, special

characters, and stemming.

3. Model Selection:

- Choose a suitable pre-trained sentiment analysis model from Hugging

Face's Transformers library.

4. Fine-Tuning:

- Fine-tune the selected model on the collected dataset to enhance its

performance on product reviews.

5. Integration:

- Integrate the trained model into a platform where businesses can input

reviews and receive sentiment analysis results.

6. Inference:

- Utilize the model to automatically analyze the sentiment of product reviews

in real- time.

Tasks:

1. Data Collection:

- Curate a labeled dataset of product reviews covering a diverse range of

products.

2. Data Preprocessing:

- Clean and preprocess text data, addressing issues specific to sentiment

analysis.

3. Model Selection:

- Choose a pre-trained sentiment analysis model that aligns with the

requirements of product reviews.

4. Fine-Tuning:

- Fine-tune the model on the collected dataset, ensuring it captures nuances

in product sentiment.

5. Integration:

- Integrate the sentiment analysis model into a user-friendly platform for

businesses to analyze product reviews.

6. Inference:

- Demonstrate the model's effectiveness by performing real-time sentiment

analysis on a set of diverse product reviews.

Evaluation:

The evaluation will encompass the following aspects:

1. Accuracy Metrics:

- Assess the accuracy of the model in correctly predicting the sentiment of

product reviews.

2. Live Evaluation:

- Present a live session explaining the methodology, implemented features,

and showcase the system's effectiveness in real-time.

3. Feedback:

- Receive feedback on your implementation, emphasizing strengths and

suggesting areas for improvement.

This project is designed to showcase your proficiency in sentiment analysis and

your ability to implement it in a practical context, addressing the needs of

businesses in understanding customer sentiments toward their products.

Use Case 11: Named Entity Recognition (NER) for Legal Documents

Description:

In this use case, the objective is to implement a Named Entity Recognition (NER)

system tailored for legal documents. The goal is to automatically identify and

classify entities such as names of individuals, organizations, dates, and legal

terminology within legal texts. This system will streamline information extraction

processes in the legal domain, enhancing efficiency and accuracy.

Learning Outcome:

By undertaking this project, you will gain expertise in the following areas:

1. Data Collection:

- Assemble a labeled dataset of legal documents with annotated entities.

2. Data Preprocessing:

- Clean and preprocess legal text data, addressing challenges specific to the

legal domain.

3. Model Selection:

- Choose a pre-trained NER model from Hugging Face's Transformers library

suitable for legal entity recognition.

4. Fine-Tuning:

- Fine-tune the selected model on the collected legal dataset to adapt it to

the intricacies of legal language.

5. Integration:

- Integrate the trained NER model into a platform where legal professionals

can extract and analyze entities from legal documents.

6. Inference:

- Utilize the model to automatically recognize and categorize named entities

in real- time within legal documents.

Tasks:

1. Data Collection:

- Compile a labeled dataset of legal documents, ensuring diversity in legal

contexts and document types.

2. Data Preprocessing:

- Clean and preprocess legal text data, addressing challenges such as

legalese, complex sentence structures, and specific legal terminologies.

3. Model Selection:

- Choose a pre-trained NER model that aligns with the requirements of

recognizing entities in legal documents.

4. Fine-Tuning:

- Fine-tune the model on the collected legal dataset, ensuring it captures the

nuances of named entities in legal contexts.

5. Integration:

- Integrate the NER model into a user-friendly platform for legal professionals

to extract entities from legal documents.

6. Inference:

- Demonstrate the model's effectiveness by performing real-time entity

recognition on a variety of legal documents.

Evaluation:

The evaluation will involve assessing the following aspects:

1. Entity Recognition Accuracy:

- Measure the accuracy of the NER model in correctly identifying and

categorizing named entities in legal documents.

2. Live Evaluation:

- Present a live session explaining the methodology, implemented features,

and showcase the system's effectiveness in real-time legal document

analysis.

3. Feedback:

- Receive feedback on your implementation, highlighting strengths and

suggesting areas for improvement, especially in handling legal language

intricacies.This project aims to showcase your expertise in implementing

NER systems for specialized domains, with a focus on the legal field.

Use Case 12: Topic Modeling for Research Papers

Description:

In this use case, the goal is to develop a topic modeling system for academic

research papers. The objective is to automatically identify and categorize the main

topics present in a collection of research papers. This system will assist

researchers, students, and institutions in efficiently navigating through vast

amounts of academic literature and staying informed about current trends and

subjects in their field.

Learning Outcome:

By working on this project, you will gain experience in the following key areas:

1. Data Collection:

- Assemble a dataset of research papers with relevant metadata, including

titles, abstracts, and keywords.

2. Data Preprocessing:

- Clean and preprocess text data from research papers, handling challenges

such as diverse writing styles and technical language.

3. Model Selection:

- Choose a pre-trained topic modeling model from Hugging Face's

Transformers library or other relevant sources.

4. Fine-Tuning:

- Fine-tune the selected model on the collected dataset to adapt it to the

specific characteristics of research papers.

5. Integration:

- Integrate the trained topic modeling model into a platform where users can

input research papers and receive information about the main topics.

6. Inference:

- Use the model to automatically extract and present the main topics from

research papers in real-time.

Tasks:

1. Data Collection:

- Compile a dataset of research papers, ensuring diversity in topics, authors,

and publication sources.

2. Data Preprocessing:

- Clean and preprocess text data from research papers, considering

challenges specific to academic writing.

3. Model Selection:

- Choose a pre-trained topic modeling model suitable for academic research

paper analysis.

4. Fine-Tuning:

- Fine-tune the model on the collected dataset, ensuring it captures the

nuances and diversity of topics in research papers.

5. Integration:

- Integrate the topic modeling model into a user-friendly platform, allowing

users to explore topics within research papers easily.

6. Inference:

- Demonstrate the model's effectiveness by performing real-time topic

extraction on a diverse set of research papers.

Evaluation:

The evaluation will include the following components:

1. Topic Extraction Accuracy:

- Measure the accuracy of the topic modeling model in correctly identifying

and categorizing the main topics in research papers.

2. Live Evaluation:

- Present a live session explaining the methodology, implemented features,

and showcase the system's effectiveness in real-time research paper

analysis.

3. Feedback:

- Receive feedback on your implementation, highlighting strengths and

suggesting areas for improvement, particularly in handling the nuances of

academic writing.

This project aims to demonstrate your proficiency in implementing topic modeling

systems for specialized domains, with a focus on academic research papers.

Use Case 13: Automated Code Review Assistant

Description:

In this use case, the aim is to create an automated code review assistant to assist

software developers in the code review process. The system will analyze source

code submissions, identify potential issues, and provide constructive feedback.

This will help maintain coding standards, improve code quality, and streamline the

code review workflow.

Learning Outcome:

By engaging in this project, you will gain experience in the following areas:

1. Data Collection:

- Assemble a dataset of code snippets or full source code files with associated

review comments or annotations.

2. Data Preprocessing:

- Clean and preprocess code data, handling formatting variations and

extracting relevant features.

3. Model Selection:

- Choose or design a code analysis model suitable for identifying common

coding issues and best practices.

4. Fine-Tuning:

- Fine-tune the selected model on the collected dataset to adapt it to the

specific coding standards and practices of the development team.

5. Integration:

- Integrate the trained code review model into popular version control

systems or code collaboration platforms used by the development team.

6. Inference:

- Use the model to automatically analyze code submissions during the code

review process and provide feedback to developers.

Tasks:

1. Data Collection:

- Gather a dataset of code snippets or full source code files, ensuring

representation of various programming languages and common coding

issues.

2. Data Preprocessing:

- Clean and preprocess code data, extracting relevant features and ensuring

consistency in formatting.

3. Model Selection:

- Choose or design a code analysis model that aligns with the requirements

of identifying coding issues and providing constructive feedback.

4. Fine-Tuning:

- Fine-tune the model on the collected dataset, considering the specific

coding standards and practices of the development team.

5. Integration:

- Integrate the code review model into the development team's workflow,

such as incorporating it into version control systems or code collaboration

platforms.

6. Inference:

- Demonstrate the model's effectiveness by automatically reviewing and

providing feedback on code submissions in real-time.

Evaluation:

The evaluation will include the following components:

1. Code Review Accuracy:

- Measure the accuracy of the code review model in correctly identifying

coding issues and providing relevant feedback.

2. Live Evaluation:

- Present a live session explaining the methodology, implemented features,

and showcase the system's effectiveness in real-time code review.

3. Feedback:

- Receive feedback on your implementation, emphasizing strengths and

suggesting areas for improvement, especially in aligning with the team's

coding standards.

This project aims to showcase your ability to implement practical solutions for code

analysis and automate aspects of the code review process to enhance

development workflows.

Use Case 14: Smart Home Automation System(Alexa)

Description:

In this use case, the objective is to design and implement a smart home

automation system that leverages artificial intelligence for improved efficiency and

user experience. The system will enable users to control various devices in their

homes, such as lights, thermostats, and security cameras, using voice commands

or automated routines. This project aims to showcase the integration of AI into

everyday environments to enhance convenience and energy efficiency.

Learning Outcome:

By engaging in this project, you will gain experience and understanding in the

following areas:

1. Device Integration:

- Integrate various smart home devices into a unified system, allowing for

centralized control.

2. Natural Language Processing (NLP):

- Implement NLP capabilities to enable voice commands for controlling

devices.

3. Automation Rules:

- Design and implement automation rules based on user preferences and

routines.

4. Machine Learning for Predictive Automation:

- Use machine learning to predict user preferences and automate device

control based on historical data.

5. Security Integration:

- Integrate security features to ensure the privacy and safety of smart home

users.

6. User Interface:

- Develop a user-friendly interface, such as a mobile app or a web portal, for

easy control and monitoring of the smart home system.

Tasks:

1. Device Integration:

- Integrate a variety of smart home devices, including lights, thermostats,

cameras, and smart plugs, into the automation system.

2. Natural Language Processing (NLP):

- Implement NLP capabilities to recognize and process voice commands for

controlling smart home devices.

3. Automation Rules:

- Design and implement automation rules that allow users to create custom

routines for their smart home.

4. Machine Learning for Predictive Automation:

- Use machine learning algorithms to analyze user behavior and predict

preferences for automated device control.

5. Security Integration:

- Implement security features, such as secure authentication and data

encryption, to protect user privacy and prevent unauthorized access.

6. User Interface:

- Develop a user-friendly interface, either as a mobile app or a web portal,

allowing users to easily control and monitor their smart home devices.

Evaluation:

The evaluation will include the following components:

1. User Experience:

- Assess the user experience of interacting with the smart home system,

considering ease of use and overall satisfaction.

2. Automation Accuracy:

- Measure the accuracy of automation rules and predictive automation

features in meeting user expectations.

3. Security Assessment:

- Evaluate the security measures implemented to safeguard user privacy and

prevent unauthorized access.

4. Live Demonstration:

- Present a live demonstration showcasing voice commands, automation

routines, and the overall functionality of the smart home system.

5. Feedback:

- Receive feedback on your implementation, focusing on user experience,

automation accuracy, security measures, and potential areas for

improvement. This project aims to demonstrate your ability to integrate AI

into practical, everyday scenarios, emphasizing user-centric design,

automation accuracy, and security considerations in the context of a smart

home environment.

Use Case 15: Image Generation from Text

Description:

In this use case, the objective is to create a system that generates images based

on textual descriptions. This can be applied in various domains, such as generating

scene illustrations from written prompts, conceptualizing design ideas, or even

assisting in creative content creation. The system will take a textual input and

generate corresponding images, demonstrating the capabilities of text-to-image

synthesis.

Learning Outcome:

By working on this project, you will gain experience and understanding in the

following areas:

1. Data Collection:

- Collect a dataset of paired examples consisting of textual descriptions and

corresponding images.

2. Data Preprocessing:

- Preprocess textual descriptions and images to create a compatible dataset

for training.

3. Model Selection:

- Choose a suitable pre-trained image generation model, possibly leveraging

architectures like DALL-E or similar frameworks.

4. Fine-Tuning:

- Fine-tune the selected model on the collected dataset to align it with the

specific requirements of generating images from text.

5. Integration:

- Develop an interface or application where users can input text, and the

system generates corresponding images.

6. Inference:

- Demonstrate the system's ability to generate images in real-time based on

user- provided textual descriptions.

Tasks:

1. Data Collection:

- Assemble a dataset containing textual descriptions paired with

corresponding images.

2. Data Preprocessing:

- Implement preprocessing steps to make the textual and image data

compatible for model training.

3. Model Selection:

- Choose a pre-trained image generation model suitable for the text-to-image

synthesis task.

4. Fine-Tuning:

- Fine-tune the selected model using the collected dataset to enhance its

performance in generating images from textual prompts.

5. Integration:

- Develop an application or platform where users can interactively input text

and receive generated images.

6. Inference:

- Showcase the system's real-time image generation capabilities based on

user- provided textual descriptions.

Evaluation:

The evaluation will include:

1. Image Quality Metrics:

- Assess the quality of generated images based on predefined criteria.

2. Live Evaluation:

- Conduct a live session to demonstrate the system's real-time image

generation capabilities, explaining your approach and the features

implemented.

3. Feedback:

- Gather feedback on the system's performance, strengths, and areas for

improvement during and after the live evaluation session.

Use Case 16: Speech-to-Text Transcription for Meeting Minutes

Description:

In this use case, the goal is to implement a Speech-to-Text (STT) transcription

system for converting spoken language during meetings into written text. This

system aims to streamline the process of creating meeting minutes, making it

more efficient and accurate. By leveraging automatic transcription, businesses can

save time and resources, ensuring comprehensive and precise documentation of

discussions and decisions.

Learning Outcome:

By working on this project, you will gain experience and understanding in the

following areas:

1. Data Collection:

- Gather a diverse dataset of audio recordings from various meetings, ideally

with different speakers and accents.

2. Data Preprocessing:

- Preprocess audio data, handle noise, and ensure compatibility for training

an STT model.

3. Model Selection:

- Choose a pre-trained Speech-to-Text model, such as those available in

popular libraries like Google's Speech Recognition API or Mozilla

DeepSpeech.

4. Fine-Tuning:

- Fine-tune the selected model on the collected dataset to adapt it to the

specific characteristics of meeting recordings.

5. Integration:

- Develop an application or integrate the STT model into existing meeting

platforms to provide real-time transcription.

6. Inference:

- Demonstrate the system's ability to transcribe spoken words into written

text during live meetings.

Tasks:

1. Data Collection:

- Assemble a dataset containing audio recordings of diverse meetings with

different speakers.

2. Data Preprocessing:

- Implement preprocessing steps to enhance the quality of audio data and

prepare it for training.

3. Model Selection:

- Choose a pre-trained STT model that aligns with the goals of accurate

transcription for meeting minutes.

4. Fine-Tuning:

- Fine-tune the selected model on the collected meeting dataset to improve

transcription accuracy.

5. Integration:

- Develop an application or integrate the STT model into meeting platforms

for seamless transcription during live sessions.

6. Inference:

- Showcase the system's real-time transcription capabilities during live

meetings, converting spoken words into written text.

Evaluation:

The evaluation will include:

1. Transcription Accuracy Metrics:

- Measure the accuracy of the system in transcribing meeting recordings

compared to human-generated transcripts.

2. Real-time Performance:

- Evaluate the system's ability to provide timely transcriptions during live

meetings.

3. Live Demonstration:

- Conduct a live session to demonstrate the STT system in action, explaining

the approach and features implemented.

4. Feedback:

- Gather feedback on the system's performance, accuracy, and user

experience during and after the live demonstration.

Use Case 17: Product Image Classification using Teachable Machine

Description:

This use case involves implementing a product image classification system using

Teachable Machine, a platform that allows users to easily train machine learning

models without extensive coding knowledge. The system will be designed to

classify products based on images, providing a practical solution for inventory

management, e- commerce platforms, or retail applications.

Learning Outcome:

By working on this project, you will gain experience and understanding in the

following areas:

1. Data Collection:

- Collect a dataset of product images, ensuring diversity in products and

variations in image conditions.

2. Data Labeling:

- Label the collected images with corresponding product categories, creating

a labeled dataset for model training.

3. Teachable Machine Setup:

- Set up a project on Teachable Machine, upload the labeled dataset, and

train a custom image classification model.

4. Model Evaluation:

- Evaluate the performance of the trained model using accuracy metrics

provided by Teachable Machine.

5. Integration:

- Integrate the trained Teachable Machine model into an application or

platform where users can upload product images for classification.

6. Inference:

- Demonstrate the system's ability to classify product images in real-time

using the trained model.

Tasks:

1. Data Collection:

- Assemble a dataset containing diverse product images covering different

categories.

2. Data Labeling:

- Label the product images with corresponding categories to create a labeled

dataset.

3. Teachable Machine Setup:

- Create a project on Teachable Machine, upload the labeled dataset, and

train a custom image classification model.

4. Model Evaluation:

- Evaluate the accuracy and performance of the trained model using

Teachable Machine's metrics.

5. Integration:

- Integrate the trained Teachable Machine model into a user-friendly

application or platform for product image classification.

6. Inference:

- Showcase the system's real-time product image classification capabilities

using the trained Teachable Machine model.

Evaluation:

The evaluation will include:

1. Model Accuracy:

- Assess the accuracy of the Teachable Machine model in correctly classifying

product images.

2. User Interface:

- Evaluate the user interface and experience of the application/platform for

product image classification.

3. Real-time Performance:

- Evaluate the system's speed and efficiency in processing and classifying

product images in real-time.

4. Live Demonstration:

- Conduct a live session to demonstrate the product image classification

system's effectiveness, explaining the approach and features implemented.

5. Feedback:

- Gather feedback on the system's performance, accuracy, and user

experience during and after the live demonstration.

Use Case 18: Tumor Detection in Medical Imaging

Description:

This use case involves the development of a tumor detection system using medical

imaging data. The system will utilize machine learning algorithms to analyze

medical images, such as MRIs or CT scans, to identify and classify tumors. Early

detection of tumors is crucial for timely medical intervention and treatment

planning.

Learning Outcome:

By working on this project, you will gain experience and understanding in the

following areas:

1. Data Collection:

- Gather a diverse dataset of medical images containing both tumor and non-

tumor cases.

2. Data Preprocessing:

- Preprocess medical images, handle variations in resolution, and normalize

pixel values for effective model training.

3. Model Selection:

- Choose or develop a suitable deep learning model for tumor detection in

medical images, considering architectures like Convolutional Neural

Networks (CNNs).

4. Fine-Tuning:

- Fine-tune the selected model on the collected medical image dataset to

improve its performance in tumor detection.

5. Integration:

- Integrate the trained tumor detection model into existing medical imaging

systems for real-time analysis.

6. Inference:

- Demonstrate the system's ability to detect and classify tumors in medical

images in real-time.

Tasks:

1. Data Collection:

- Assemble a dataset containing medical images with labeled tumor and non-

tumor cases.

2. Data Preprocessing:

- Implement preprocessing steps to ensure the medical image data is clean,

normalized, and ready for model training.

3. Model Selection:

- Choose or develop a deep learning model suitable for tumour detection in

medical images.

4. Fine-Tuning:

- Fine-tune the chosen model on the collected medical image dataset to

enhance its ability to detect tumors.

5. Integration:

- Integrate the trained tumor detection model into existing medical imaging

systems for seamless analysis.

6. Inference:

- Showcase the system's real-time tumor detection capabilities,

demonstrating its accuracy in identifying and classifying tumors.

Evaluation:

The evaluation will include:

1. Detection Accuracy:

- Measure the accuracy of the system in correctly detecting and classifying

tumors in medical images.

2. False Positive Rate:

- Assess the system's ability to minimize false positives, ensuring accurate

tumor detection.

3. Real-time Performance:

- Evaluate the system's speed and efficiency in processing and analysing

medical images in real-time.

4. Live Demonstration:

- Conduct a live session to demonstrate the tumour detection system's

effectiveness, explaining the approach and features implemented.

5. Feedback:

- Gather feedback on the system's performance, accuracy, and practicality

from healthcare professionals and stakeholders during and after the live

demonstration.

Use Case 19: Facial Recognition for Access Control

Description:

This use case involves implementing facial recognition technology for access

control in secure environments. The system will use facial recognition algorithms

to identify individuals and grant or deny access based on their facial features. This

technology is applicable in various scenarios such as building entrances, secure

facilities, and attendance tracking.

Learning Outcome:

By working on this project, you will gain experience and understanding in the

following areas:

1. Data Collection:

- Gather a diverse dataset of facial images with labeled identities to train the

facial recognition model.

2. Data Preprocessing:

- Preprocess facial images, handle variations in lighting, resolution, and pose

for effective model training.

3. Model Selection:

- Choose a suitable facial recognition model, considering factors like accuracy

and real-time processing capabilities.

4. Fine-Tuning:

- Fine-tune the selected model on the collected facial image dataset to

enhance its performance in recognizing individuals.

5. Integration:

- Integrate the trained facial recognition model into access control systems

for real- time identification.

6. Inference:

- Demonstrate the system's ability to recognize individuals in real-time and

grant or deny access accordingly.

Tasks:

1. Data Collection:

- Assemble a dataset containing facial images with labeled identities,

ensuring diversity in individuals and conditions.

2. Data Preprocessing:

- Implement preprocessing steps to ensure the facial image data is clean,

aligned, and ready for model training.

3. Model Selection:

- Choose a pre-trained facial recognition model suitable for access control,

balancing accuracy and real-time processing requirements.

4. Fine-Tuning:

- Fine-tune the chosen model on the collected facial image dataset to improve

its accuracy in recognizing individuals.

5. Integration:

- Integrate the trained facial recognition model into existing access control

systems for seamless real-time identification.

6. Inference:

- Showcase the system's real-time facial recognition capabilities,

demonstrating its accuracy in identifying and granting/denying access.

Evaluation:

The evaluation will include:

1. Recognition Accuracy:

- Measure the accuracy of the system in correctly recognizing individuals

based on facial features.

2. False Positive Rate:

- Assess the system's ability to minimize false positives, ensuring accurate

access control.

3. Real-time Performance:

- Evaluate the system's speed and efficiency in processing and recognizing

faces in real-time.

4. Live Demonstration:

- Conduct a live session to demonstrate the facial recognition system's

effectiveness, explaining the approach and features implemented.

5. Feedback:

- Gather feedback on the system's performance, accuracy, and practicality

from stakeholders during and after the live demonstration.

Use Case 20: Visual Question Answering (VQA)

Description:

In this use case, the goal is to develop a Visual Question Answering (VQA) system,

which combines computer vision and natural language processing to answer

questions related to images. This technology finds applications in various domains,

including accessibility for visually impaired individuals, interactive robotics, and

content retrieval.

Learning Outcome:

By working on this project, you will gain experience and understanding in the

following areas:

1. Data Collection:

- Gathering a dataset with pairs of images and corresponding questions along

with their answers.

2. Data Preprocessing:

- Preprocessing image data, including resizing and normalization.

- Tokenizing and encoding textual questions.

3. Model Architecture:

- Selecting or designing a model that can handle both image and text input

for question answering.

4. Transfer Learning:

- Utilizing pre-trained models for image recognition and natural language

processing.

5. Integration:

- Integrating the VQA model into a user interface or application.

6. Evaluation:

- Assessing the accuracy of the model in answering a diverse set of questions

related to images.

Tasks:

1. Data Collection:

- Gather a dataset containing images, questions, and corresponding answers.

2. Data Preprocessing:

- Preprocess image data, ensuring uniformity in size and normalization.

- Tokenize and encode textual questions for model input.

3. Model Architecture:

- Choose or design a model architecture capable of handling both image and

text inputs for question answering.

4. Transfer Learning:

- Leverage pre-trained models for image recognition and natural language

understanding.

5. Integration:

- Build a user interface or application to showcase the VQA system.

6. Evaluation:

- Assess the model's performance by evaluating its accuracy in answering

questions related to provided images.

Evaluation:

The evaluation will consist of the following components:

1. Accuracy Metrics:

- Measure the accuracy of the VQA model in providing correct answers.

2. User Experience Testing:

- Conduct user testing to evaluate the system's usability and user

satisfaction.

3. Feedback:

- Gather feedback on the implementation, addressing both strengths and

potential areas for improvement.

This project will demonstrate your proficiency in combining computer vision and

natural language processing for a practical application. The evaluation will provide

valuable insights into the effectiveness and user experience of the developed VQA

system.

Student Assessment Plan:

Each of the above-mentioned test projects will be divided into tasks by the

training partner for each specific institution. Such tasks will be jointly evaluated

by the faculty and the training partner and the following weightage is to be

followed.

● 70% weightage to the external practical assessment.

● 30% weightage to the internal assessment.

Final Test Project/External Assessment Plan:

The Final Test Project will be chosen from the list given above, jointly by

the college faculty and the Training Partner. The Final Test Project will be assessed

on the following tasks, for 70%.

Details Marks

Task: 1 20

Task: 2 20

Task: 3 20

Task: 4 20

Task: 5 20

