Programmable System-on-Chip architecture for ARM Cortex-M0 devices (PSOC):

Course Objectives	 Equip students with a comprehensive understanding of PSoC architecture and ARM Cortex-M0 core, enabling them to proficiently design and develop embedded systems applications. Provide hands-on experience in configuring digital and analog components. Implement serial and wireless communication protocols. Integrate advanced features such as capacitive sensing and real-time operating systems, and create custom components. Demonstrate the ability to apply these skills to develop complex embedded systems solutions for various real-world applications through practical projects and a capstone assignment.
Learning Outcomes	 Proficiency in the basics of PSoC architecture and its digital and analog components. Delve into the ARM Cortex-M0 core, exploring its features and instruction set. Set up the development environment using PSoC Creator IDE and delve into digital and analog design, learning to configure blocks and peripherals. Advance into serial and wireless communication, capacitive sensing, RTOS implementation, and custom component creations.

Course Duration: 45 Hours

Course Content:

Unit 1: Introduction to PSoC and ARM Cortex-M0

Overview of PSoC Architecture: Introduction to PSoC (Programmable System-on-Chip), Comparison with traditional microcontrollers and FPGAs, PSoC architecture: Digital and analog blocks, UDBs (Universal Digital Blocks), PLDs, and configurable interconnect, Introduction to ARM Cortex-M0: Overview of ARM Cortex-M0 core: Features, advantages, and applications, ARM Cortex-M0 instruction set and architecture basics. Development Environment Setup: Introduction to PSoC Creator IDE, Installation and setup of software tools, Overview of development workflow: Design, build, program, and Debug.

Unit 2: Basic Concepts and Peripherals

Digital Design with PSoC: Configuring digital blocks: Timers, counters, PWMs, interfacing digital peripherals: GPIO, LEDs, switches, Basic digital project: Blinking LED with PWM control, Analog Design with PSoC: Configuring analog blocks: ADCs, DACs, OpAmps, interfacing analog peripherals: Sensors, potentiometers, Basic analog project: Reading sensor data and displaying on a serial monitor.

Unit 3: ARM Cortex-M0 Cortex-M0 Programming

Programming Basics: Introduction to C, programming for ARM Cortex-M0, Writing and debugging simple programs, Using CMSIS (Cortex Microcontroller Software Interface Standard) libraries, Interrupts and Low Power Modes: Configuring and handling interrupts. Implementing low power modes for energy-efficient applications, Practical example: Button press interrupt and power-saving mode.

Unit 4: Communication Protocols

Serial Communication: UART: Configuration and communication, I2C: Configuration and communication with sensors, SPI: Configuration and communication with external devices, Practical project: Interfacing an external EEPROM using I2C, Wireless Communication: Introduction to wireless communication protocols: BLE, Wi-Fi, Configuring and using BLE in PSoC, Practical project: Creating a BLE-enabled sensor application.

Unit 5: Advanced Topics and Projects

Capacitive Sensing: Introduction to capacitive sensing, configuring capacitive touch sensors in PSoC, Practical project: Implementing a capacitive touch button, RTOS and Multitasking: Introduction to Real- Time Operating Systems (RTOS), Implementing FreeRTOS on ARM Cortex-M0, Practical project: Creating a

multitasking application with FreeRTOS. Custom Components and APIs: Creating custom components in PSoC Creator, Writing and using custom APIs. Practical project: Designing a custom component for specific application, Capstone Project: Students propose, design, implement, and test a complex project of their choice, Example projects: Smart home automation system, portable medical monitoring device, or a mini robotics controller, Presentation and demonstration of the final project.

Test Projects:

Use Cases

1. Digital Thermometer:

Project: Develop a digital thermometer using a temperature sensor. Details: Interface an analog temperature sensor with PSoC, convert the analog signal to digital using ADC, and display the temperature on an LCD or serial monitor.

2. Capacitive Touch Interface:

Project: Implement a capacitive touch button or slider.

Details: Configure the capacitive touch block in PSoC to create a touchsensitive interface for user input.

3. PWM Motor Speed Controller:

Project: Control the speed of a DC motor using PWM. Details: Use a potentiometer to adjust the PWM duty cycle and vary the motor speed.

4. UART Communication:

Project: Create a UART communication link between PSoC and a PC. Details: Send sensor data from PSoC to a PC terminal via UART and display the data.

5. Wireless Sensor Node:

Project: Develop a wireless sensor node using BLE. Details: Collect data from a sensor, transmit the data over BLE, and display it on a mobile app.

6. Real-Time Clock (RTC):

Project: Implement a real-time clock using an external RTC module. Details: Display the current date and time on an LCD and keep time even when the device is powered off.

7. Battery Management System:

Project: Design a simple battery management system. Details: Monitor battery voltage and current, display the battery status, and implement low battery warning.

8. Gesture-Based Control:

Project: Develop a gesture-based control system using an accelerometer. Details: Use accelerometer data to recognize gestures and control an application (e.g., lighting control).

9. Smart Home Controller:

Project: Create a smart home controller.

Details: Interface with sensors and actuators to control home appliances based on sensor inputs and user commands.

10. Environmental Monitoring System:

Project: Develop an environmental monitoring system.

Details: Use sensors to measure temperature, humidity, and air quality, and display the data on an LCD or send it to a cloud server.

11.Voice-Activated Device:

Project: Implement a simple voice-activated device.

Details: Use a microphone and audio processing to recognize specific voice commands and control an application.

12. Robotics Controller:

Project: Design a controller for a simple robotic arm.

Details: Use PSoC to control the motors and read sensors to perform basic robotic tasks.

13.Health Monitoring System:

Project: Develop a health monitoring system.

Details: Interface with heart rate and temperature sensors to monitor vital signs and display the data.

14. Data Logger:

Project: Create a data logger for environmental data.

Details: Collect data from multiple sensors, store the data in memory, and periodically upload it to a PC or cloud server.

15.Home Security System:

Project: Implement a home security system.

Details: Use motion sensors, door/window sensors, and a camera to monitor and secure a home.

16. Energy Meter:

Project: Design an energy meter to measure power consumption.

Details: Measure voltage and current to calculate power and energy consumption, and display the results.

17. Remote-Controlled Vehicle:

Project: Develop a remote-controlled vehicle.

Details: Use a wireless communication module (e.g., BLE or RF) to control a small vehicle with PSoC as the controller.

18.Smart Irrigation System:

Project: Create a smart irrigation system.

Details: Use soil moisture sensors to control irrigation valves and optimize water usage for plants.

19.Wearable Fitness Tracker:

Project: Develop a wearable fitness tracker.

Details: Use accelerometers and heart rate sensors to track physical activity and health metrics, and display the data on a wearable display or mobile app.

20. Automated Plant Watering System:

Project: Implement an automated plant watering system.

Details: Use soil moisture sensors and a water pump to automatically water plants when the soil is dry.