ANNEXURE I

	TABLE 1: MODULE-WISE COURSE CONTENT AND OUTCOME				
SL.	MODULE	MODULE	MODULE LEARNING	DURATIO	
NO	NAME	CONTENT	OUTCOME	N (HRS)	
1	Introduction to Rapid Prototyping	Definition and importance in modern product development. Comparison with traditional prototyping methods (time, cost, accuracy). History and Evolution of Rapid Prototyping	Basics of rapid prototyping, its terminologies, needs and uses	10	
		initial research to commercialized 3D printing. Key milestones in additive manufacturing (AM).			
2	Fundamenta Is of 3D Printing	Overview of Additive Manufacturing Processes Fused Deposition Modeling (FDM): Material extrusion basics, pros, and cons Stereo lithography (SLA): Liquid resin- based methods. Selective Laser Sintering (SLS): Powder-based approaches. Emerging technologies: Binder Jetting, DMLS, and PolyJet.	Knowledge in types of materials , material selection and properties and exploring the features of software	10	

		Understanding 3D Printer Components Extruder, bed, nozzle, motors, and control units. Calibration techniques for consistent quality. Materials in Additive Manufacturing Plastics: PLA, ABS, PETG, nylon, and composites. Metals: Aluminum, titanium, and steel. Other Materials: Ceramics, bio- materials, and carbon fiber.		
3	3D Modeling and Design	Introduction to CAD Software Overview of industry-standard software like TinkerCAD, Fusion 360, or SolidWorks. Basics of 2D sketches and extrusion techniques. Advanced Design Concepts Lofting, fillets, shelling, and patterns. Parametric modeling and constraints. Optimization for Additive Manufacturing	Techniques in designing	10

4	Printing Workflow and Troubleshoo ting	Printer Setup and Calibration Bed leveling techniques. Loading and changing filaments. Using Slicing Software Overview of Cura, PrusaSlicer, and Simplify3D. Configuring settings: Layer height, infill density, print speed. Understanding and Resolving Print Failures Stringing, warping, layer shifting, and adhesion issues. Adjusting temperature and cooling settings.	Troubleshooting printer settings and usage of 3d printer	10
5	Industrial Applications of Rapid Prototyping	Concept models for new car designs. Functional prototypes for testing aerodynamic performance. Lightweight structural components to improve fuel efficiency.	Applications of 3d printer	5

ANNEXURE II

OVERALL COURSE LEARNING OUTCOME ASSESSMENT CRITERIA AND USECASES				
LEARNING OUTCOME	ASSESSMEN T CRITERIA	PERFORMA NCE CRITERIA	USECASES	
 The role of AI and ML in designing customized prosthetics and implants. Explain the applications of rapid prototyping technologies, such as 3D printing, in healthcare. Identify the data and inputs required for creating prosthetics, including patient anatomy, biomechanics, and material properties. Understand regulatory and ethical considerations in the production of prosthetics and implants. 	 Quiz/MCQs: Evaluate knowledge of prosthetics design principles, rapid prototyping technologies, and material selection. Case Study Analysis: Provide scenarios where students analyze data and select the appropriate prosthetic design and manufacturin g method. 	 Accurately describe the data preparation process for prosthetics design, including CT/MRI scan interpretatio n. Explain the properties of materials suitable for medical- grade prosthetics and implants. The implications of precision and resolution in rapid prototyping technologies. 	Healthcare: Customized Prosthetics and Implants Case Study: A hospital partnered with a 3D printing company to produce prosthetics for amputees. Traditional prosthetics often required weeks to manufacture and cost thousands of dollars. Using 3D scanning and printing, the team developed custom-fitted prosthetics in just 48 hours, reducing production costs by 70%. Patients reported improved comfort and functionality, with prototypes iteratively improved based on feedback. Key Takeaway: Rapid prototyping enables faster production of personalized medical devices, enhancing patient care while reducing costs.	
• Use computational tools (e.g., CAD/CAE) to design lightweight automotive	Quiz /MCQs : Test knowledge of lightweight	 Accurately describe the properties and 	Automotive: Lightweight Component Development	
components.·EmployAI/MLalgorithmstooptimizethe	manufacturin g techniques, and design	of lightweight materials such as	A car manufacturer used 3D printing to prototype lightweight	

geometry and	principles.	carbon fiber,	parts for an electric
material usage of	· Case Study	aluminum	vehicle's suspension
automotive parts.	Analysis:	alloys, and	system. The design
· Operate rapid	Provide	polymers.	team experimented with
prototyping	scenarios	\cdot Explain the	lattice structures to
technologies, such as	where	principles of	reduce weight without
3D printers, to	students	topology	compromising strength.
fabricate lightweight	analyze	optimization	Multiple iterations of the
component	existing	and its	component were printed
prototypes.	automotive	application in	and tested, leading to a
 Conduct mechanical 	parts and	weight	15% reduction in the
testing and	suggest	reduction.	car's total weight,
evaluation of	lightweight	 Understand 	improving energy
prototypes for	alternatives.	the impact of	efficiency.
strength, durability,		weight	
and performance.		reduction on	Key Takeaway:
		vehicle	3D printing accelerates
		dynamics,	innovation in
		safety, and	lightweight, high-
		environment	performance
		al	automotive parts,
		compliance.	enabling sustainable
			designs.

LIST OF FINAL PROJECTS (PROJECTS THAT COMPREHENSIVELY COVER ALL THE LEARNING OUTCOME)				
SL.NO	FINAL PROJECT			
1	Create a lightweight and functional car part, such as a gear shifter or air intake component.			
2	Develop a personalized gadget, such as a phone stand or ergonomic tool for household use.			
3	Build a detailed scale model of a modern building or bridge for presentation and visualization.			

ANNEXURE III

TABLE 3: COURSE ASSESSMENT RUBRICS (TOTAL MARKS: 70)					
ASSESSME	DESCR	TOTAL			
NT	CATEGORY PERFORMANCE			MARKS	
CRITERIA	FAIR	GOOD	EXCELLENT		
Presentation skills	15	25	30	70	

Category	Assessment Criteria	Performanc e Levels	Weightage (Marks)
Practical Skills Proficiency	Demonstrates ability to perform job-specific tasks effectively, using relevant tools, techniques, or methodologies (e.g., Tally for accounting, consignment tracking).	Fair, Good, Excellent	15
Technical Knowledge Application	Applies theoretical concepts to practical scenarios with accuracy and relevance (e.g., compliance with GST laws, financial planning, or logistics protocols).	Fair, Good, Excellent	15
Project Execution	Completes assigned projects or use cases demonstrating innovation, thoroughness, and skill application relevant to industry standards.	Fair, Good, Excellent	30
Communication and Reporting	Clearly presents findings, solutions, or project outcomes using professional communication and documentation standards (e.g., reports, presentations).	Fair, Good, Excellent	10