NAAN MUDHALVAN - POLYTECHNIC - ODD SEMESTER 2025-26

COURSE CURRICULUM

IOT AND ITS APPLICATIONS

ABOUT THE COURSE

This course introduces students to the fundamentals of the Internet of Things (IoT) and its applications, enabling them to interface sensors with microcontrollers, collect and transmit real-time data, and integrate AI for intelligent decision-making. Through practical modules and use cases spanning agriculture, healthcare, automation, and urban infrastructure, students will develop and deploy smart IoT-AI applications. The program concludes with hands-on projects and a capstone to assess technical, problem-solving, and collaborative skills.

COURSE NAME:	IoT and its Applications
TOTAL DURATION:	60 HRS
MODE OF DELIVERY	PHYSICAL CLASSROOM TRAINING AT RESPECTIVE
	COLLEGES
TRAINER TO	1:60
STUDENT RATIO:	
TOTAL MARKS:	70 (External) + 30 (Internal)

TABLE 1		
OVERALL COURSE OBJECTIVE	 Apply the foundational concepts of the Internet of Things (IoT) in smart systems. Interface and integrate various digital and analog sensors with IoT platforms. Collect real-time data, processing, and wireless transmission using microcontrollers. Implement AI/ML techniques for sensor data analysis and smart decision-making at the edge. Build practical, scalable IoT-AI applications in sectors such as agriculture, healthcare, and automation. 	
LEARNING OUTCOME	 Evaluate the architecture and working of IoT systems and sensor networks. Interface multiple sensors (temperature, humidity, motion, gas, etc.) with IoT development boards. Collect, transmit, and visualize sensor data through cloud platforms like Blynk, ThingSpeak, 	

or Firebase.	
• Apply AI models to classify, predict, or automate	
based on sensor data using tools like Edge	
Impulse or TensorFlow Lite.	
• Develop and deploy real-time IoT applications	
integrated with AI for smart monitoring and	
control.	

	TABLE 2: MODULE-WISE COURSE CONTENT AND OUTCOME				
SL N O	MODULE NAME	MODULE CONTENT		MODULE LEARNING OUTCOME	DURATIO N (60 HRS)
1	Fundamentals of IoT and Sensor Systems	IoT architecture & ecosystem, Types of sensors (analog/digital), Microcontrollers for IoT (Arduino, ESP32), Power sources & safety	•	Understand the basics of IoT systems and classify types of sensors used in real-time applications.	12 hrs
2	Sensor Interfacing and Data Acquisition	Interfacing temperature, humidity, gas, PIR, ultrasonic sensors, Analog to digital conversion, Signal conditioning	•	Interface sensors with IoT boards and perform accurate data acquisition and signal conversion.	12 hrs
3	Communicati on Protocols & IoT Networking	Serial communication: UART, SPI, I2C Wireless protocols: Wi- Fi, Bluetooth, Zigbee. Introduction to MQTT/HTTP protocols IoT data formats (JSON)	•	Implement communicatio n between sensors, microcontrolle rs and cloud platforms using suitable protocols.	12 hrs
4	AI for Sensor Data Processing	Basics of AI and ML, Tools: Edge Impulse, TFLite Micro, Model training (classification/regressio n), Deployment on ESP32/Arduino	•	Train and deploy lightweight AI models to perform real- time classification and decision- making on IoT devices.	12 hrs

5	IoT System Development & Capstone Project and Case Studies	Design and implementation of an IoT + AI solution. Use case exploration in agriculture, smart home, and health monitoring	 Apply knowledge to build and demonstrate a real-world IoT-AI integrated application with sensor data. Design and develop a secure, functional IoT system and evaluate its real-world applicability. 	12 hrs
---	--	---	--	--------

TABLE 3: OVERALL COURSE LEARNING OUTCOME ASSESSMENT CRITERIA AND USE CASES		
LEARNING OUTCOME	ASSESSMENT CRITERIA	USE CASES
 Integrate environmental sensors for data- driven agricultural decisions 	 Design a sensor system for soil and climate monitoring 	Use Case 1 - AI-Based Precision Agriculture & Crop Health Analytics Scenario: A farm wants to automate irrigation.
		Task: Integrate soil moisture sensors with an IoT system to control water valves based on soil dryness.
 Implement IoT- based automation using environmental and presence sensors 	 Integrate motion and temperature sensors into a smart home ecosystem 	Use Case 2 - Context- Aware Intelligent Home Control Systems Scenario: A startup is developing energy-efficient homes.
		Task:ImplementtemperatureandmotionsensorstoautomateHVACandlightingsystems.

 Deploy sensors for monitoring machine health and anomalies 	Use Case 3 - AI-Powered Predictive Maintenance & Process Automation Scenario: A manufacturing plant aims to reduce downtime. Task: Deploy vibration and temperature sensors on machines to predict failures.
• Integrate ultrasonic sensors and wireless modules for occupancy detection	Use Case 4 - Computer Vision & Sensor Fusion for Intelligent Parking Systems
	Scenario: A city wants to improve parking availability.
	Task: Use ultrasonic sensors to detect parking slot occupancy and send data to a central server.
 Design an IoT-based wearable to collect vital health data 	Use Case 5 -Edge AI for Vital Signs & Health Anomaly Detection
	Scenario: A hospital wants to monitor patients remotely.
	Task: Use heart rate and oxygen saturation sensors integrated with IoT for continuous tracking.
• Integrate footfall and temperature sensors to measure customer experience	Use Case 6 - AI-Driven Customer Behaviour Analytics & Inventory Prediction
	Scenario : A retailer wants to optimize store layout.
	Task: Install footfall sensors and temperature sensors to analyse customer movement and comfort.
	 monitoring machine health and anomalies Integrate ultrasonic sensors and wireless modules for occupancy detection Design an IoT-based wearable to collect vital health data Integrate footfall and temperature sensors to measure customer

 Deploy gas and particulate sensors for continuous air quality monitoring 	 Deploy gas and particulate sensors for continuous air quality monitoring 	Use Case 7-Sensor- IntegratedIntegratedAIforAir/WaterQualityPredictionQualityScenario:A governmentagency needsair qualitydata.airTask:Integrategasanetworkforreal-timepollutiontracking.
 Monitor perishable goods using IoT and concor 	 Implement temperature and humidity sensors in logistics tracking 	Use Case 8 - Real-Time AI Monitoring for Cold Chain Integrity
sensor technology	logistics tracking	Scenario: A logistics firm transports perishable goods.
		Task: Use temperature and humidity sensors to monitor and log storage conditions in real time.
• Detect and prevent water loss using	• Deploy flow and pressure sensors to	Use Case 9 -AI-Based Leak Detection & Consumption Forecasting
sensor- integrated IoT systems	monitor pipelines	Scenario: A city faces water leakage issues.
,		Task: Use flow and pressuresensors to detect leaks andautomatepipelinemonitoring.
 Design wearable systems with embedded 	 Integrate motion sensors for activity tracking. 	Use Case 10 -On-Device AI for Motion & Health Pattern Recognition
sensors and wireless communication		Scenario: A company is building fitness bands.
		Task:Integrateaccelerometersandgyroscopes for activity andposture tracking.

 Optimize urban infrastructure using IoT-based sensor systems 	 Implement light and motion sensors for adaptive lighting 	Use Case 11 - Adaptive Lighting using AI and Occupancy Sensing Scenario: A municipality wants energy-efficient lighting. Task: Integrate light and motion sensors to control street lights based on pedestrian presence.
 Improve energy distribution efficiency using IoT-based monitoring 	 Integrate voltage and current sensors for real-time grid diagnostics 	Use Case 12 - AI-Powered Load Forecasting and Energy Optimization Scenario: An energy provider aims to improve power distribution. Task: Integrate voltage and current sensors for real-time load balancing.
 Design efficient waste collection systems using IoT 	• Use level sensors to detect and report bin fill levels	Use Case 13 - ML-Based Waste Detection and Smart Bin Monitoring Scenario: A city wants to optimize waste collection. Task: Use level sensors in bins to detect fill level and notify collection teams.
• Develop early warning systems with environmental sensors	• Implement water level and rainfall sensors for flood detection	Use Case 14 - Real-Time Sensor Analytics & AI for Disaster Prediction Scenario: An area is prone to floods. Task: Integrate water level and rain sensors for early warning systems.

 Create intelligent learning environments using sensor technology 	 Deploy ambient and presence sensors to manage campus utilities 	Use Case 15 - Integrated AI Systems for Energy, Security, and Facility Management Scenario: A university wants a connected campus. Task: Deploy various environmental sensors for classroom comfort and smart energy usage.
 Monitor animal health through IoT sensor integration 	 Implement movement and body temperature sensors for health tracking 	Use Case 16 -AI-Based Livestock Behaviour & Health Tracking Scenario: A dairy farm wants better herd health. Task: Use temperature and movement sensors to monitor cows' health and behaviour.
 Track inventory movement in real-time using IoT sensors 	 Deploy RFID and proximity sensors for automated stock tracking 	Use Case 17 - ML-Driven Inventory Forecasting & Real-Time Tracking Scenario: A warehouse needs inventory tracking. Task: Use RFID and proximity sensors for real- time stock updates.
• Apply IoT sensor technology in forest resource management	 Design a network of environmental sensors for forestry analytics 	Use Case 18 - AI-Enabled Forest Monitoring & Deforestation Detection Scenario: A forest department monitors tree health. Task: Deploy soil and environmental sensors to track forest conditions and growth trends.

 Monitor infrastructure safety using embedded sensors 	 Install vibration and tilt sensors for structural condition analysis 	Use Case 19 - Sensor- Driven AI for Infrastructure Stress and Damage Analysis Scenario: A civil engineering
		firm monitors bridges. Task: Install strain gauges and tilt sensors to assess structural integrity.
• Enable energy consumption analytics using	• Integrate electrical sensors for usage tracking and reporting	Use Case 20 - AI-Based Consumption Pattern Analysis & Load Balancing
sensor-enabled IoT		Scenario: A utility company upgrades metering.
		Task: Integrate current and voltage sensors with wireless modules for real-time consumption data.

TABLE 4: LIST OF FINAL PROJECTS (20 PROJECTS THAT COMPREHENSIVELY COVER ALL THE LEARNING OUTCOMES)		
S. NO.	FINAL PROJECT (The Training Partner shall cover all the steps to complete a given project)	
1	AI-Based Precision Agriculture & Crop Health Analytics	
2	Context-Aware Intelligent Home Control Systems	
3	AI-Powered Predictive Maintenance & Process Automation	
4	Computer Vision & Sensor Fusion for Intelligent Parking Systems	
5	Edge AI for Vital Signs & Health Anomaly Detection	
6	AI-Driven Customer Behaviour Analytics & Inventory Prediction	
7	Sensor-Integrated AI for Air/Water Quality Prediction	
8	Real-Time AI Monitoring for Cold Chain Integrity	
9	AI-Based Leak Detection & Consumption Forecasting	
10	On-Device AI for Motion & Health Pattern Recognition	
11	Adaptive Lighting using AI and Occupancy Sensing	
12	AI-Powered Load Forecasting and Energy Optimization	
13	ML-Based Waste Detection and Smart Bin Monitoring	

14	Real-Time Sensor Analytics & AI for Disaster Prediction
15	Integrated AI Systems for Energy, Security, and Facility
	Management
16	AI-Based Livestock Behaviour & Health Tracking
17	ML-Driven Inventory Forecasting & Real-Time Tracking
18	AI-Enabled Forest Monitoring & Deforestation Detection
19	Sensor-Driven AI for Infrastructure Stress and Damage Analysis
20	AI-Based Consumption Pattern Analysis & Load Balancing

TABLE 5: COURSE ASSESSMENT RUBRICS (TOTAL MARKS: 75)							
ASSESSMENT CRITERIA	DESCRIBE CAT	TOTAL					
	FAIR	GOOD	EXCELLENT	MARKS			
Application of IoT Concepts & Sensor Integration	Basic application of IoT concepts; limited sensor knowledge	Clear application of IoT architecture and major sensor types	Deep application of protocols, sensor types, and integration strategies	15			
Implementation of Concepts in Use Cases	Implements concepts with minimal real- world relevance	Implements concepts effectively to common scenarios	Implements concepts innovatively with high relevance and accuracy	20			
Design and Implementation Skills, Problem- Solving, and Innovation	Basic design with limited integration or technical flaws Limited problem- solving; relies on predefined solutions.	Functional design with adequate sensor integration Shows initiative in solving problems using standard approaches	Well-structured, optimized design with excellent integration of sensors and IoT components Demonstrates creativity and innovation in solving complex, real-world challenges	15			
Technical Report Documentation and Project Execution Demonstration	Poorly organized, lacks detail or clarity Partially working demo or simulation with major issues	Well- organized with sufficient detail Fully working demo with minor flaws	Professional, highly detailed, and technically accurate documentation Smooth, well- executed demo with strong justification and alignment to design goals	15			

Teamwork and Collaboration, Presentation and Communication Skills	Rarely participates in group efforts Lacks clarity, limited visuals, and weak explanation	to team	Highly collaborative, takes initiative, and enhances team productivity Engaging, confident delivery with strong visual aids and clear articulation of technical details	5	
Total					