ANNEXURE: 1 MODULE WISE COURSE CONTENT AND OUTCOME

TABLE: MODULE WISE COURSE CONTENT AND OUTCOME				
S.N	MODULE NAME	MODULE CONTENT	MODULE LEARNING OUTCOME	DURA TION (HRS)
1	FUNDAMEN TALS OF SENSORS AND INTERFACI NG	 Introduction to Sensors: Overview of sensors: analog, digital, and smart sensors Key parameters: sensitivity, accuracy, resolution, and response time Interfacing Basics: Analog interfacing: ADC and signal conditioning Digital interfacing: I2C, SPI, UART, and GPIO Power considerations for sensors Arduino Basics: Pin configurations, basic coding in Arduino IDE Reading sensor data using analog and digital pins Raspberry Pi Basics: GPIO setup and Python programming Using Raspberry Pi OS to access sensors Hands-on: Read analog sensor data using Arduino and 	 Understand the basic types of sensors (analog, digital, and smart) and their key parameters (e.g., sensitivity, accuracy, and resolution). Gain proficiency in interfacing sensors with Arduino and Raspberry Pi using both analog and digital communication methods (e.g., ADC, I2C, SPI, GPIO). Develop basic skills in programming and using the Arduino IDE for reading sensor data and visualizing it via the Serial Monitor. Learn to set up Raspberry Pi for sensor interfacing, including GPIO setup and using Python to access sensor data. 	9 Hrs

		 visualize it using the Serial Monitor. Interface a digital sensor with Raspberry Pi using I2C protocol. 		
2	ANALOG SENSORS AND SIGNAL CONDITIO NING	 Analog Sensor Interfacing: Resistive sensors: thermistors, strain gauges Voltage and current output sensors Signal conditioning: amplification, filtering, impedance matching Using Arduino for Analog Sensors: Using built-in ADC for signal acquisition Plotting data with serial plotter Using Raspberry Pi for Analog Sensors: Using external ADC modules (e.g., MCP3008) Visualizing data with Python libraries (e.g., Matplotlib) Hands-on: Interface a thermistor with Arduino and display temperature readings. Interface an analog gas sensor with Raspberry Pi using an MCP3008 ADC. 	 Apply principles of analog sensor interfacing, including the use of resistive sensors (e.g., thermistors) and voltage/current output sensors. Implement signal conditioning techniques like amplification, filtering, and impedance matching to enhance sensor data accuracy. Develop skills in using Arduino's built-in ADC for signal acquisition and visualization. Learn how to interface analog sensors with Raspberry Pi using external ADC modules (e.g., MCP3008) and visualize data with Python. 	9 Hrs

3	DIGITAL SENSORS AND COMMUNIC ATION PROTOCOL S	 Digital Sensors: MEMS sensors (e.g., accelerometers, gyroscopes) Smart sensors with onboard data processing Communication Protocols: I2C, SPI, and UART basics Addressing and data transfer techniques Using Arduino for Digital Sensors: Accessing sensor data via I2C and SPI libraries Debugging communication issues Using Raspberry Pi for Digital Sensors: Accessing GPIO, I2C, SPI, and UART interfaces via Python Using smbus and spidev Python libraries for digital sensors Hands-on: Interface an accelerometer with Arduino and display real-time data. Use a humidity sensor with Raspberry Pi via I2C. 	 Master the use of digital sensors (e.g., MEMS sensors) and communication protocols (I2C, SPI, UART). Develop the ability to interface with digital sensors via I2C and SPI using both Arduino and Raspberry Pi, including handling addressing and data transfer. Learn to troubleshoot communication issues in digital sensor interfacing. Gain hands-on experience accessing sensor data from digital sensors and displaying it in real time using Arduino and Raspberry Pi. 	9 Hrs
4	ADVANCED SENSOR INTERFACI	 Wireless Sensor Interfacing: 	 Understand wireless sensor interfacing using modules like 	9 Hrs

NG TECHNIQU ES	 Bluetooth and Wi- Fi modules (e.g., ESP8266, ESP32) Setting up wireless data transmission to a server or mobile app Sensor Fusion: Combining accelerometer and gyroscope data for IMU calculations Filtering algorithms: Kalman and complementary filters Advanced Raspberry Pi Applications: Real-time sensor monitoring with MQTT and Node- RED Database integration for logging sensor data Hands-on: Create a wireless temperature and humidity monitoring system using ESP32 with Arduino IDE. Implement sensor fusion with accelerometer and gyroscope on Raspberry Pi. 	 ESP8266 and ESP32, and design systems for wireless data transmission. Learn sensor fusion techniques by combining accelerometer and gyroscope data, and implement filtering algorithms (Kalman and complementary filters) for data refinement. Explore advanced applications on Raspberry Pi, including real-time monitoring using MQTT and Node-RED, as well as integrating sensor data into a database or cloud server for remote access and storage. 	
5 APPLICATI ONS AND PRACTICAL PROJECTS	 Applications: Environmental monitoring (e.g., air quality, temperature, and light sensors) Smart homes (e.g., motion 	 Apply sensor interfacing skills to real-world applications, including environmental monitoring, smart home systems, and robotics. 	9 Hrs

	 detection, door open/close sensors) Robotics (e.g., proximity sensors, LIDAR for navigation) Practical Projects: Design a smart home system using Arduino to monitor temperature, motion, and light intensity. Build a weather monitoring station with Raspberry Pi, logging temperature, pressure, and humidity data to a cloud server. Create a robotic arm using position and force sensors, controlled by Raspberry Pi. Final Assessment: Integrate multiple sensors with Arduino or Raspberry Pi for a real-world project. Present performance analysis, design challenges, and solutions. 	 Design and implement complete sensor-based systems with Arduino and Raspberry Pi, integrating multiple sensors for specific projects (e.g., smart home, weather station, or robotic arm). Gain practical experience in presenting project designs, performance analysis, and addressing challenges in real-world sensor interfacing scenarios. 	
--	---	---	--

ANNEXURE : 2 Industry Use Cases/Final Projects

1.Smart Home Temperature and Humidity Monitoring

Scenario:

Monitor and regulate the air quality inside a home to ensure optimal comfort.

Task:

Interface temperature and humidity sensors with Arduino or Raspberry Pi to collect and visualize real-time data, and automate HVAC systems based on readings.

2.Industrial Equipment Monitoring

Scenario:

Prevent machine downtime in an industrial setting by monitoring operating conditions.

Task:

Use analog and digital sensors with Raspberry Pi to monitor temperature, vibration, and pressure of equipment, sending alerts when thresholds are exceeded.

3. Environmental Pollution Monitoring in Urban Areas

Scenario:

Track pollution levels in urban areas to comply with environmental standards.

Task:

Interface gas sensors (CO2, CO, NO2) with Raspberry Pi for real-time pollution monitoring, and log data to a cloud server for further analysis.

4. Agricultural Irrigation Automation

Scenario:

Automate irrigation systems based on weather conditions to optimize water usage.

Task:

Use temperature, humidity, and soil moisture sensors with Arduino to monitor environmental conditions and control irrigation systems accordingly.

5.Smart Lighting Systems for Offices

Scenario:

Save energy by automatically adjusting lighting based on occupancy and ambient light.

Task:

Interface motion and light sensors with Raspberry Pi to control the lighting system in an office building, reducing energy consumption.

1.Real-Time Temperature Monitoring in Industrial Furnaces

Scenario:

Monitor furnace temperatures to ensure safe and optimal operation.

Task:

Interface thermocouples or RTDs with Arduino, using signal conditioning techniques to acquire accurate temperature data for real-time monitoring and control.

2. Monitoring of Fuel Systems in Vehicles

Scenario:

Monitor fuel pressure and temperature for efficient vehicle operation.

Task:

Interface resistive pressure sensors and thermistors with Raspberry Pi to monitor fuel system parameters, ensuring optimal vehicle performance.

3. Strain Measurement for Structural Integrity

Scenario:

Ensure the safety of structural components in buildings or bridges.

Task:

Use strain gauges with Arduino to measure stress and strain on critical structural components, providing data for predictive maintenance.

4. Solar Energy Production Monitoring

Scenario:

Track and optimize solar panel performance for maximum energy output.

Task:

Interface current and voltage sensors with Raspberry Pi to monitor solar panel efficiency, logging data and alerting users to underperformance.

5. Precision Agricultural Equipment Calibration

Scenario:

Calibrate and monitor agricultural machinery for accurate planting and fertilizing.

Task:

Use analog sensors for soil moisture and temperature, interfaced with Arduino, to ensure precision in automated agricultural equipment.

1.Smart Wearables for Healthcare Monitoring

Scenario:

Track vital health parameters of individuals for continuous monitoring.

Task:

Interface MEMS sensors (accelerometer, gyroscope) with Arduino for activity tracking and health monitoring in a wearable device.

2. Wireless Industrial Asset Tracking

Scenario:

Automatically track the location and condition of industrial assets.

Task:

Use digital sensors (e.g., RFID) with Raspberry Pi to monitor and track assets in real-time, reducing loss and improving inventory management.

3. Automated Security Systems for Critical Infrastructure

Scenario:

Enhance security by automating motion detection and alarm systems.

Task:

Interface motion sensors with Raspberry Pi to trigger security alarms and monitor unauthorized movement in sensitive areas.

4.IoT-based Smart Factory Monitoring

Scenario:

Track real-time data from various machines and equipment on a production line.

Task:

Use accelerometers, humidity, and temperature sensors with Raspberry Pi, transmitting data via I2C/SPI to a central control system for analysis and decision-making.

5.Smart Traffic Management System

Scenario:

Improve traffic flow and reduce congestion in urban centers.

Task:

Use proximity and environmental sensors interfaced with Raspberry Pi to monitor traffic patterns and adjust traffic signals accordingly.

1. Remote Weather Station for Disaster Management

Scenario:

Monitor weather conditions remotely to predict and manage natural disasters.

Task:

Interface wireless weather sensors (e.g., barometer, anemometer) with Raspberry Pi and transmit data over Wi-Fi to a central server for analysis.

2. Wireless Environmental Monitoring for Remote Locations

Scenario:

Monitor environmental parameters (e.g., temperature, humidity) in remote locations.

Task:

Use ESP32 or similar wireless modules with Arduino to transmit data from remote locations to a cloud-based system for continuous monitoring.

3.Industrial Machine Health Monitoring Using Wireless Sensors

Scenario:

Monitor the health of industrial machinery remotely to predict maintenance needs.

Task:

Interface vibration and temperature sensors with ESP32, using wireless communication to send data to a cloud-based monitoring system.

4.Smart City Waste Management System

Scenario:

Optimize waste collection in urban areas by monitoring garbage bin levels.

Task:

Use ultrasonic distance sensors with Raspberry Pi to monitor the fill level of waste bins and send alerts when bins need to be emptied.

5. Sensor Fusion for Autonomous Navigation in Robotics

Scenario:

Enable robots to navigate autonomously in complex environments.

Task:

Use sensor fusion techniques combining accelerometer, gyroscope, and LIDAR data on Raspberry Pi to enable real-time autonomous navigation of robots in dynamic settings.

TABLE: LIST OF FINAL PROJECTS (20 PROJECTS THAT COMPREHENSIVELY COVER ALL THE LEARNING OUTCOME)			
SL.NO	FINAL PROJECT		
1	Smart Home Temperature and Humidity Monitoring		
2	Industrial Equipment Monitoring		
3	Environmental Pollution Monitoring in Urban Areas		
4	Agricultural Irrigation Automation		
5	Smart Lighting Systems for Offices		
6	Real-Time Temperature Monitoring in Industrial Furnaces		
7	Sensor Fusion for Autonomous Navigation in Robotics		
8	Monitoring of Fuel Systems in Vehicles		
9	Strain Measurement for Structural Integrity		
10	Solar Energy Production Monitoring		
11	Precision Agricultural Equipment Calibration		
12	Smart Wearables for Healthcare Monitoring		
13	Wireless Industrial Asset Tracking		
14	Automated Security Systems for Critical Infrastructure		
15	IoT-based Smart Factory Monitoring		
16	Smart Traffic Management System		
17	Remote Weather Station for Disaster Management		
18	Wireless Environmental Monitoring for Remote Locations		
19	Industrial Machine Health Monitoring Using Wireless Sensors		
20	Smart City Waste Management System		

ANNEXURE :3 Assessment Rubrics

ASSESSMENT	DESCRIBE THE CRITERIA OF THE BELOW CATEGORY PERFORMANCE			ΤΟΤΑ
CRITERIA	FAIR	GOOD	EXCELLEN	MARK S
Knowledge and understanding	Recalls key definitions and concepts.	Explains concepts in a clear and concise manner.	Applies concepts to solve problems and answer questions in a comprehensive and insightful manner.	20
Application and Analysis	Attempts to apply knowledge to solve problems, even if the solution is not entirely accurate.	Applies knowledge to solve problems correctly, demonstratin g a clear understanding of the concepts involved.	Critically analyzes problems, identifies relevant concepts, and applies knowledge to develop creative and effective solutions.	20
Evaluation and Synthesis	Identifies relevant informatio n from various sources.	Analyzes and critiques information from various sources, identifying strengths and weaknesses.	Synthesizes information from various sources to form well-founded arguments and evidence-based conclusions.	15
Communicatio n Skills	Presents informatio n in a clear and organized manner, but may lack detail or clarity.	Presents information in a clear, concise, and well- organized manner, using appropriate language and terminology.	Presents information in a clear, concise, and well-organized manner, using sophisticated language and terminology to engage the audience.	15