ABOUT THE COURSE

COURSE NAME:	Data Science with Python.
TOTAL DURATION:	45 Hrs
	PHYSICAL CLASSROOM TRAINING AT
	RESPECTIVE COLLEGES
TRAINER TO STUDENT	1.50
RATIO:	1.50
TOTAL MARKS:	75

Table 1						
OVERALL	Data science is rapidly transforming various industries,					
COURSE	from healthcare and finance to marketing and education.					
OBJECTIVE:	As a result, the demand for skilled data scientists is					
	skyrocketing. This course will help students comprehend					
	the usage of Python and its libraries for creation of					
	applications in the data science area for various real world					
	problems. The field of data science is experiencing					
	explosive growth, leading to numerous job opportunities					
	in various sectors. Learning data science with Python can					
	significantly enhance a student's skill and industry					
	readiness.					

LEARNING	1. Comprehend applications of data science to real				
OUTCOME:	world problems and industries				
	2. Use python libraries for crafting simple models as				
	solutions for data science use cases				
	3. Use techniques to collect & organize data.				
	4. Use techniques for plotting and visualizing data.				

	TABLE 2: MODULE WISE COURSE CONTENT AND OUTCOME					
SL. NO	MODULE NAME	MODULE CONTENT	MODULE LEARNING OUTCOME	DURA TION (HRS)		
1	Introduction to Data Science TOC - Introduction to Data Science Infosys Springboard	Data Revolution, Components of Data Science, Class & Object, Data Science Process & Architecture, Data Science Project Life cycle, Data Science Ecosystems	To understand what data science is to recognize why data science is gaining importance in today's business world to comprehend where data science can be applied in different scenarios across industry domains to understand major components of data science stack to learn how a data science project is implemented step- by-step in a given business use-case	5		
2	Python for DS TOC - Python for Data Science Infosys Springboard	Introduction to Numpy, Introduction to Pandas, Introduction to Pandas objects, Working with datasets, Operations in Pandas	 Explain the need of python libraries Use Numpy to work with arrays Use Pandas to load, explore, manipulate, analyze and process data Derive statistical outcomes of a real dataset Visualize data Create a machine learning model for predictive analysis 	11		
3	Python for DS TOC - Python	Introduction to Data Visualization,	Python is a high-level programming	11		

	for Data Science Infosys Springboard	Introduction to Matplotlib, Object Oriented Interface in Matplotlib, Machine learning using sklearn	language which has gained a remarkable growth in the field of data science. This course aims to introduce you to some of the powerful, open- source python libraries used in Data Science including Numeric- Python (Numpy), Pandas, Matplotlib and Scikit-learn.	
4	Exploratory Data analysis - TOC - Exploratory Data Analysis Infosys Springboard	Collecting and Organizing Data, Importing Data, Preprocessing Data, Developing Insights from data	What is Exploratory Data Analysis Realize why is it significant in the analysis of data Grasp the techniques to collect & organize data Import data from various types of files into the Python environment Learn various data preprocessing techniques Explore and summarize data Develop insights from data	9
5	Data visualization - TOC - Data Visualisation using Python Infosys Springboard	Data Visualisation, Variety in Data, Data Visualisation Stakeholders, Data Visualisation, Visualisation Constructs	To distinguish between different plotting techniques for different data types. To plot different kinds of graphs - box plot, scatter plot, line	9

	chart, dot chart, bar graph, and histogram. To plot different types of	
	data on diverse kinds of graphs.	

TABLE 3: OVERALL COURSE LEARNING OUTCOME ASSESSMENTCRITERIA AND USE CASES

LEARNING OUTCOME	ASSESSMENT CRITERIA	Performance Criteria	USE CASES
Apply Python libraries for data analysis and modeling.	Completion of practical assignments.	Construct clean and organized datasets; implement Python libraries for statistical and predictive modeling.	Automate data wrangling for a retail sales dataset.
Develop effective data visualizations.	Project-based evaluation.	Design and present advanced visualizations that support clear decision-making.	Create dashboards for stock market analysis using Python visualization libraries.
Build machine learning models for predictive	Model performance	Propose suitable models and justify their efficiency	Predict customer churn using classification

analytics.	evaluations.	through accuracy and precision metrics.	models.
Summarize data insights using EDA techniques.	Hands-on exercises on preprocessing data.	Develop clean datasets and identify patterns or anomalies using Python libraries.	Prepare datasets for sales forecasting through preprocessing and summarization.
Design an end-to- end data science pipeline.	Capstone project evaluation.	Create and deploy a data pipeline integrating EDA, visualization, and predictive modeling for a real-world problem.	Design a credit scoring system for a financial institution.

TABLE 4	4: LIST OF FINAL PROJECTS (PROJECTS THAT EHENSIVELY COVER ALL THE LEARNING OUTCOME)
SL.NO	FINAL PROJECT
1	 A company wants to study the demographic data to make predictions about the earning potential of the population. However, the data gathered is not clean for analysis. The company requests you, as a data scientist, to perform the following operations and gain some insights from the data for data driven competitive advantage. Remove data with missing values Remove outliers Establish the importance of the weekly working hours on earning potential Find the features that are highly correlated with the earning potential Find the relation between the number of years spent to get the degree and earning potential

6. Find the relationship between age and earning potential
Data Source
The dataset for the problem is available <u>here</u> .
Contents of the folder are as follows.
Dataset
Dataset Description

TABLE 5	TABLE 5: COURSE ASSESSMENT RUBRICS (TOTAL MARKS: 75)						
ASSESSME NT CRITERIA	Learning Outcome	Fair (1–5)	Good (6- 10)	Excellent (11–15)	TOTA L MARK S		
Data Preprocessin g and Organizatio n	Summarize data insights using EDA techniques.	Demonstrates limited ability to preprocess and organize datasets.	Prepares datasets with minor inconsistencie s and partial preprocessing	Prepares clean, well- structured datasets with comprehen sive preprocessi ng.	15		
Python Coding and Modeling	Apply Python libraries for data analysis and modeling.	Implements basic coding solutions with limited functionality.	Produces functional scripts using Python libraries with minor errors.	Develops optimized scripts for efficient data analysis and modeling.	15		

Visualization Design	Develop effective data visualization s.	Creates basic visualizations with minimal insights or clarity.	Designs clear visuals with adequate insights and logical presentation.	Develops advanced, impactful visualizatio ns that communica te key insights effectively.	15
Predictive Model Developmen t	Build machine learning models for predictive analytics.	Builds basic models with low accuracy or limited application.	Creates functional models with moderate accuracy and reliability.	Develops optimized, highly accurate models, demonstrati ng advanced techniques.	15
Capstone Project Execution	Design an end-to-end data science pipeline integrating EDA, visualization , and predictive modeling.	Demonstrates limited integration of techniques into the project.	Integrates most techniques with some inconsistencie s or gaps.	Seamlessly integrates all techniques, creating a cohesive and effective data science solution.	15