TABLE 1: MODULE WISE COURSE CONTENT AND OUTCOME					
SI. Module No Name		Module Content	Module Learning	Duration (Hrs)	
			Outcome		
1	Introduction to IC Design	Overview of digital design and VLSI, basic digital logic (AND, OR, NOT, NAND, NOR, XOR, XNOR), combinational logic design (adders, multiplexers, decoders), sequential logic design (flip-flops, registers, counters), RTL design methodologies, applications of IC design.	Understand basic principles of IC design, learn digital design flow and methodologies, familiarize with combinational and sequential logic, discuss applications of IC design.	9 Hrs	
2	RTL Coding Techniques	Introduction to Verilog/VHDL, coding combinational logic in Verilog/VHDL, coding sequential logic in Verilog/VHDL, testbenches and simulation, RTL coding best practices, debugging and verifying RTL designs.	Learn various RTL coding techniques, understand principles of HDLs like Verilog and VHDL, practice writing RTL code, simulate and verify RTL designs.	9 Hrs	

Annexure I: Course Curriculum

3	Synthesis and Optimization	Overview of synthesis tools (e.g., Synopsys Design Compiler, Cadence Genus), constraints and timing analysis, logic synthesis process, optimization techniques (area, speed, power), analyzing and interpreting synthesis reports, common issues and troubleshooting in synthesis.	Understand principles of physical design and its importance in IC design, learn various stages of physical design, practice using physical design tools and verifying designs.	9 Hrs
4	Physical Design and Verification	Overview of physical design flow, placement and routing techniques, clock tree synthesis, design rule checks (DRC), layout verification, physical verification tools.	Implement robust security measures to protect data and ensure system integrity in industrial settings.	9 Hrs
5	Verification and Testing	Overview of verification methodologies, simulation-based verification, formal verification, hardware emulation, design for test (DFT) techniques, testing and validation tools.	Learn various verification techniques (simulation, formal verification, hardware emulation), understand the importance of testing in IC design, practice using verification tools and techniques.	9 Hrs

Annexure II: Use Cases and Test Projects

TABLE 2: Use Cases Processor Design: This use case involves the design and development of custom processors and microcontrollers tailored to specific applications. These processors are integral components of various digital systems, providing the computational power necessary for tasks ranging from simple control functions to complex data processing. Communication Systems: This use case involves the design and development of high-speed data transfer protocols and interfaces. These communication systems are essential for ensuring efficient and reliable data transmission in various digital systems, including networking, telecommunications, and data storage applications. Automotive Electronics: This use case involves the design and development of control systems and infotainment systems in automotive electronics. These systems are crucial for ensuring vehicle safety, comfort, and entertainment, thereby enhancing the overall driving experience. Use Case: Consumer Electronics Description: This use case involves the design and development of digital components for consumer electronics such as smartphones and gadgets. These components are essential for ensuring efficient performance, user-friendly interfaces, and advanced functionalities in modern consumer devices. Use Case: Industrial Automation

Description: This use case involves the design and development of control logic for machinery and robots in industrial automation. These systems are essential for ensuring precision, efficiency, and safety in automated manufacturing and industrial processes

Use Case: Medical Devices

Description: This use case involves the design and development of digital circuits for diagnostic and monitoring equipment used in medical applications. These systems are essential for ensuring accurate diagnostics, continuous monitoring of patient health, and reliable performance in medical environments.

Use Case: Aerospace

Description: This use case involves the design and development of avionics and navigation systems for aerospace applications. These systems are essential for ensuring the safety, reliability, and efficiency of aircraft and spacecraft operations.

Use Case: Networking

Description: This use case involves the design and development of routers, switches, and network processors that are essential for efficient and reliable data communication within networking infrastructures.

Use Case: Storage Systems

Description: This use case involves the design and development of controllers for SSDs (Solid State Drives) and memory devices. These controllers are essential for managing data storage, access, and retrieval, ensuring high performance and reliability in storage systems.

Use Case: IoT Devices

Description: This use case involves the design and development of digital logic for IoT (Internet of Things) devices and sensors. These systems are essential for enabling smart functionalities in various applications, including home automation, health monitoring, industrial IoT, and environmental sensing.

TABLE 3: LIST OF TEST PROJECTS (20 PROJECTS THAT COMPREHENSIVELY COVER ALL THE LEARNING OUTCOMES)				
S.NO	Final Projects			
1	Custom Processor Design: Develop a custom processor with ALU, control unit, and register file.			
2	High-Speed Data Transfer Protocol: Design and implement a high-speed data transfer protocol for communication systems.			
3	Robotic Arm Control System: Create control logic for a robotic arm used in industrial automation.			
4	Patient Monitoring System: Develop digital circuits for real-time patient health monitoring and diagnostics.			

5	Flight Control System: Design avionics systems for aircraft flight control.			
6	Network Router and Switch: Implement a network router and switch for efficient data routing and switching.			
7	SSD Memory Controller: Design a memory controller for SSDs to manage data read/write operations.			
8	Smart Home IoT Device: Develop digital logic for a smart home IoT device with sensor interfaces.			
9	Signal Processing Unit for Smartphones: Create a signal processing unit for audio and video processing in smartphones.			
10 Automotive Infotainment System: Design an infotainme system for vehicles including multimedia playback and navigation.				
11	Industrial Sensor Interface: Develop an interface for industrial sensors used in automation systems.			
12	Wearable Health Monitor: Design a wearable device for continuous health monitoring and data processing.			
13	Navigation System for Drones: Implement a navigation system for drones, ensuring accurate positioning and control.			
14	Data Encryption and Decryption Module: Create a module for secure data encryption and decryption in communication systems.			
15	Real-Time Traffic Management System: Design a system to manage and monitor traffic in real-time for smart city applications.			
16	Low-Power Design for IoT Sensors: Develop a low-power design for IoT sensors to extend battery life.			
17	Automotive Safety Control System: Create control logic for automotive safety systems like ABS and traction control.			
18	FPGA-Based Signal Generator: Design an FPGA-based signal generator for testing and diagnostics.			

19	Environmental Monitoring System: Develop digital circuits for monitoring environmental parameters like temperature and humidity.
20	Advanced Digital Filter Design: Implement digital filters for signal processing applications in various fields.

Annexure III: Assessment Rubrics

TABLE 5: COURSE ASSESSMENT RUBRICS (TOTAL MARKS: 70)				
ASSESSMENT CRITERIA	FAIR (50%- 64%)	GOOD (65%- 79%)	EXCELLE NT (80%- 100%)	WEIGHT AG E (MARKS)
Understanding of RTL Principles and Methodologies	Demonstr ates basic understan ding with minor errors in terminolog y and concepts.	Shows good understandin g, uses appropriate terminology and concepts accurately with few errors.	Demonstrates thorough understanding , uses terminology and concepts accurately and confidently in all assessments.	10
implementation of Digital Logic Circuits	Designs and implement s circuits with several errors, requires significant correction s.	Designs and implements circuits with few errors, shows good creativity and logic in design solutions.	Designs and implements circuits with high accuracy and creativity, demonstrating exceptional logic design skills.	10
Proficiency in Verilog/VHDL Coding	Writes RTL code with multiple errors, requires significant debugging and optimizati on.	Writes RTL code with few errors, demonstrate s strong coding skills and ability to debug and optimize code effectively.	Writes efficient and error-free RTL code, demonstrating exceptional coding skills and optimization techniques.	15
Simulation and Verification	Uses simulation	Effectively uses	Demonstrates mastery in	10

Skills	tools with limited success, results contain errors and require major correction s.	simulation tools, results contain few errors and require minor corrections.	using simulation tools, produces accurate results, and interprets them correctly	
	success, results contain errors and require major correction s.	contain few errors and require minor	tools, produces accurate results, and interprets	
	results contain errors and require major correction s.	errors and require minor	produces accurate results, and interprets	
	contain errors and require major correction s.	require minor	accurate results, and interprets	
	require major correction s.	minor	results, and interprets	
	major correction s.	corrections.	interprets	
	correction s.		•	
	s.		them confectly	
			with no	
Curthesis and		Draficianthy	errors.	10
Synthesis and	Uses	Proficiently	Demonstrates	10
Report Analysis	synthesis	uses	exceptional	
	tools with	synthesis	proficiency	
	limited	tools,	with synthesis	
	success, struggles	interprets reports	tools,	
	with	accurately	accurately	
	interpretin	with minor	interprets	
	g reports	issues.	reports, and	
	accurately	135465.	applies	
	accuracely		optimizations	
	•		effectively.	
Application of	Applies	Applies	Demonstrates	10
Optimization	optimizati	optimization	exceptional	
Techniques	on	techniques	application of	
	techniques	effectively,	optimization	
	with	results in	techniques,	
	limited	significant	achieving	
	success,	improvement	optimal	
	results in	S.	performance	
	moderate		and significant	
	improvem		improvements	
	ents.			
Hands-on	Shows	Demonstrate	Exhibits	5
Hardware	basic	s good	exceptional	
Experience	understan	understandin	practical skills	
	ding of	g and	and thorough	
	hardware	practical	understanding	
	implement	skills in	in hardware	
	ation,	hardware	implementatio	
		implementati	•	
	success in	on,	•	
	prototypin	successful in	of prototyping	
	ation, limited success in	hardware implementati on,	implementatio n, successful in all aspects	

	g and validation.	prototyping and validation.	and validation.	
--	----------------------	-----------------------------------	--------------------	--