
ABOUT THE COURSE: MERN STACK WITH MONGO DB

TABLE 1

OVERALL COURSE
OBJECTIVE:

● Backend Development with Node.js and
Express.js: middleware and how it's used
in Express & Creating RESTful APIs using
Express.js.

● Database Management with MongoDB:
Designing and implementing MongoDB
schemas.

● Full Stack Integration: Connecting the
frontend and backend components of an
application.

● Asynchronous Programming:
Understanding the basics of asynchronous
programming in JavaScript.

● Performance Optimization: Techniques for
optimizing the performance of both
frontend and backend code.

● Real-world Project Experience: Working
on a full-scale project to apply the
learned concepts.

LEARNING OUTCOME: ● Explore Node.js with this comprehensive
course, covering everything from setting up
Express.js environments to mastering
RESTful API development, asynchronous
programming,error handling, debugging,
and security best practices, empowering
you to build robust and secure applications.

● setup, schema building, CRUD operations,
optimization, authentication, MERN
performance, and deployment strategies for
React and Node.js applications.

TABLE 2: MODULE-WISE COURSE CONTENT AND OUTCOME

SL.N
O

MODULE
NAME

MODULE
CONTENT

MODULE LEARNING
OUTCOME

DURATIO
N
(HRS)

1 Introduction
to Node.js

Intro to
Backend
Development
What is the
backend? Role
and importance
in web
development
Client-Server
architecture
Roles &
Responsibility for
Backend
Developer
Understandin
g Node.js
What is
Node.js?
Node.js
advantages and
use cases
Installing Node.js
and npm
Basic Node.js
syntax and
structure
Node.js
Fundamentals
Global objects
and modules
The require
function
Creating a
simple
Node.js
application
event loop and
asynchronous
programming
Working with

● Clients
request;
servers
provide.

● Create/
maintain
server logic,
databases,
APIs.

● Use global
objects,
modules.
Understand
async
programming.

● Work with
different
modules and
handle http
requests.

5

Node.js Modules
Core modules (fs,
http, path, etc.)
Creating custom
modules
Using npm
packages
File System and
HTTP Module
Reading and
writing files
Creating an
HTTP server
Handling HTTP
requests and
responses

2 Fundamental
s of
Express.js

Introduction to
Express.js
What is
Express.js?
Settingup an
Express.js
application
Basic routing
with Express.js
Middleware in
Express.js
Understanding
middleware
Built-in
middleware
functions
Creating custom
middleware
Advanced
Routing
Route
parameters
Query strings
Handling
different HTTP
methods
(GET, POST, PUT,
DELETE)
Templating and
Static Files

● Implement URL
path
routing.Use
built-in/custom
middleware.

● Handle route
parameters,
query strings,
HTTP methods.

● Serve static
files, render
dynamic
content with
templating
engines.

4

Serving static
files
Usingtemplating
engines(e.g.,
EJS, Pug)
Rendering
dynamic content

3 Working
with
MongoDB

Introduction to
MongoDB What is
MongoDB?
MongoDB vs. SQL
databases
Installing and setting
up
MongoDB
Basic MongoDB
Operations
MongoDB data types
and schema
Inserting, updating,
deleting, and
querying
documents
Using MongoDB
shell
Mongoose ORM
Introduction to
Mongoose
Setting up Mongoose
with
Node.js
Defining schemas
and models
CRUD Operations
with
Mongoose
Creating and reading
documents
Updating and
deleting documents
Validations and
schema types

●

●

●

NoSQL,
document-based,
flexible schema.
JSON-like
documents,
dynamic
schemas. Insert,
update, delete,
query.
ODM for
MongoDB in
Node.js. Define
schemas/models.
Perform CRUD
operations. Apply
validations, use
various schema
types.

5

4 Integrating
Node.js,
Express,

Setting Up the
Project
Creatinga new

● Define routes for
various
functionalities.

3

and
MongoDBs

Express
application
Connecting to
MongoDBwith
Mongoose
Project structure and
organization
Building RESTful APIs
Defining API
endpoints
Creating CRUD
routes
Handling requests
and responses
Authentication and
Security
Introduction to
authentication
Implementing user
authentication
with JWT
Securing routes and
data

● Create, read,
update, delete
data. Manage
within Express.js
routes.
Basics and JWT
implementation.
Secure routes,
prevent
unauthorized
access.

5 Advanced
Concepts

Advanced Express.js
Middleware for
logging and
debugging
Error-handling
middleware
Optimizing
performance Real-
time Applications

with
Socket.io.
Introduction to
WebSockets
Setting up Socket.io
with Express
Real-time

communication
between client and
server.

●

●

●

Logging,
debugging, error
handling.
Optimize
application
efficiency.
Understand
WebSockets.
Set up
Socket.io with
Express.
Enable real-
time client-
server
communication
.

3

TABLE 3: OVERALL COURSE LEARNING OUTCOME ASSESSMENT
CRITERIA AND USE-CASES

LEARNING OUTCOME ASSESSMENT CRITERIA USE-CASES
● Clients request;

servers provide.
● Create/

maintain server
logic,
databases,
APIs.

● Use global
objects,
modules.
Understand
async
programming.

● Work with
different
modules and
handle http
requests.

● Describe client-server
architecture.Identify
backend developer
responsibilities.Understand
basic Node.js syntax.
Node.js
Fundamentals Use global
objects and
modules.Employ require
function accurately.

● Explain event loop and
asynchronous
programming.
Working with Node.js
Modules.Utilize core
modules (fs, http,
path).Create/use custom
modules. Install and use
npm packages.

● File System and HTTP
Module
Read/write files with
Node.js. Configure HTTP
servers and handle
requests efficiently.

Use Case 1: Excel
Migration

Scenario: ABC
Corporation, a
long-standing
company, has
been diligently
maintaining its
records in a
legacy CSV file
for years.
However, as
technology
evolves, they
realize the
need to
modernize
their data
management
system. The
existing CSV file,
containing
outdated data,
poses a
challenge due to
its outdated
format and lack
of compatibility
with newer
systems.

Task: Reading
Data from Legacy
CSV File:
Implement
functionality to
read data from
the legacy CSV
file, ensuring that
all relevant data
is captured
accurately. Data
Transformation:

Develop logic to
transform the
data as
necessary,
addressing any
inconsistencies or
outdated
information
present in the
legacy file.
Writing
Transformed Data
to New CSV File:
Create
functionality to
write the
transformed data
to a new CSV file,
maintaining the
desired format
and structure.

Use Case 2: File
System
Monitoring

Scenario: In a
bustling shared
directory where
files are
frequently
modified,
added, or
removed by
multiple users,
there's a
pressing need
for a robust
monitoring
solution. The
objective is to
develop a
system capable
of tracking file
system events

in real-time,
logging each
change for
monitoring,
debugging, and
auditing
purposes. As the
project
commences, the
team focuses on
designing and
implementing a
streamlined
solution tailored
to enhance
operational
efficiency and
security in this
dynamic file
environment.

Task:
Implementing
File System
Monitoring Logic:
Develop logic to
use the chokidar
package to watch
for file system
events such as
file
modifications,
additions, or
deletions within
the specified
directory.
Logging File
System Events:
Create a
mechanism to
log the detected
file system
events to the
console or a
designated log

file, providing
real-time
visibility into
changes
occurring within
the directory.
Handling Edge
Cases: Account
for potential
edge cases such
as handling
errors, ensuring
graceful
shutdown, and
handling large
volumes of file
system events
efficiently.

●

●

●

Implement
URL path
routing.Use
built-in/custo
m middleware.
Handle route
parameters,
query strings,
HTTP methods.
Serve static
files, render
dynamic
content with
templating
engines.

●

●

Explain Express.js
significance in the Node.js
ecosystem. Describe its
role in web application
development. Install and
configure
Express.js.Understand the
project structure.
Implement routing for
various URL paths.Handle
common HTTP methods.
Use built-in and custom
middleware
effectively.Manage route
parameters, query strings,
and HTTP methods.Serve
static files. Utilize
templating engines for
dynamic content
rendering.

Use Case 1:
Notes Taking App

Scenario: Alice,
a student, uses
the Simple
Note-Taking API
to organize her
study notes. She
starts by
creating a new
note using a
POST request
with the title
"Chemistry
Formulas" and
content
containing
various
chemistry
formulas. Next,
she retrieves all
her notes with a
GET request to
review them
before an exam.
After studying,
Alice realizes
she made a

mistake in one
formula. She
updates the note
using a PATCH
request with the
corrected
content. Finally,
after the exam,
she deletes the
note using a
DELETE request
to keep her
notes organized
and up to date.

Task: Create a new
note (POST /notes):
This route creates a
new note with a
unique ID, using the
request body's title
and content fields. It
then adds the new
note to the notes
array and responds
with the newly
created note and a
status code 201
(Created). Get all
notes (GET /notes):
This route retrieves
all notes stored in
the notes array and
responds with a
JSON array of notes.
Update a note by ID
(PATCH
/notes/:id): This
route updates an
existing note with
the specified ID. It
finds the index of
the note in the
notes array,
updates its title and
content fields with
the values from the
request body, and
responds with the
updated note.
Delete a note by ID
(DELETE
/notes/:id): This
route deletes a note
with the specified ID
from the notes
array. It uses the
filter method to
create a new array
without the deleted

note and responds
with a status code
204 (No Content) to
indicate successful
deletion.

Use Case 2: CRUD
Operations.

Scenario: A
developer is building
a task management
system where users
can create, view,
update, and delete
tasks.
Here's how you can
map the CRUD
operations to real-
world actions within
the task
management
system.

Task: Create an API
with POST method
that enables you to
add data into an
array. Create an API
with PUT method
that enables

you to update data
in the array. Create
an API with the
Delete method that
enables you to
delete data in an
array. Create an API
with GET method
that enables you to
view all data in an
array.

●

●

●

NoSQL,
document-based,
flexible schema.
JSON-like
documents,
dynamic
schemas. Insert,
update, delete,
query.
ODM for
MongoDB in
Node.js. Define
schemas/models.
Perform CRUD
operations.
Apply
validations, use
various schema
types.

●

●

●

Describe MongoDB's
features such as flexible
schema, scalability, and
document-oriented
storage. Explain key
differences between
MongoDB and SQL
databases, such as data
model, query language,
and scalability.
Demonstrate
understanding of
MongoDB data types
and schema. Perform
basic operations like
inserting, updating,
deleting, and querying
documents using the
MongoDB shell. Explain
the purpose of
Mongoose as an Object
Data Modeling (ODM)
library for MongoDB in
Node.js applications.
Describe Mongoose's
role in simplifying
interactions with
MongoDB.
Successfully set up
Mongoose within a
Node.js application.
Define schemas and
models effectively,
ensuring proper
structure and validation
rules.
Execute CRUD operations
using Mongoose methods
for creating, reading,
updating, and deleting
documents. Implement
validations to
ensure data integrity.
Utilize different schema
types as needed for

Use Case 1: Event
Management System

Scenario: Let's say
you're planning a
conference next
month and need to
organize it
efficiently. You start
by using the
command line
interface to create a
new event. The
system prompts you
to enter details like
the event name,
date, location, and
organizer's
information. Once
you provide these
details, the system
saves them to the
database. Later, you
want to review all
upcoming events to
ensure everything is
on track. You use
the system to
retrieve a list of
events, complete
with organizer
details. Seeing that
everything looks
good, you proceed
with updating some
event details. Maybe
the event location
changed to a hybrid
setup, so you
update that
information with a
simple command.
Finally, after the
successful
completion of your

various data structures. conference, you use
the system to delete
the event from the
database, keeping
your records clean
and organized.

Task: To create
events by giving the
inputs asked in the
terminal.
Find the events
which are created
successfully.
To retrieve all the
events in the
database.
To update the event
location to Hybrid by
giving its _id.
To delete any event
by giving

its _id.

Use Case 2:
Schemas and
Models.

Scenario: Imagine
we are building a
simple blogging
platform where
users can create
posts. Each post will
have a title, content,
author name, and
date of creation. We
will use Mongoose to
define a schema for
the posts collection
and create a model
to interact with the
database.

Task: Creates a new
document using the
ProductSchema and
saves it to the
database. Example:
Inserts a product
with name "redmi",
price 5000, color
"black", and an
additional field
"range" with value
"sss". Updates a
document in the
database that has
the name
"lava", setting its
price to 10000.
Deletes a document
from the database
that has the name
"mi".
Reads all documents
from the "products"
collection and logs
the number of
documents found.

●

●

Define routes
for various
functionalities.
Create, read,
update, delete
data. Manage
within
Express.js
routes.
Basics and JWT
implementation.
Secure routes,
prevent
unauthorized
access.

●

●

●

●

Clearly define and
document API endpoints,
specifying their purpose
and functionality. Develop
CRUD routes that
effectively handle data
operations (Create, Read,
Update, Delete).
Demonstrate proficiency
in handling HTTP requests
and responses within
Express.js routes.
Demonstrate
understanding of
authentication basics.
Implement user
authentication using JWT
and ensure secure routes
and data protection.
Utilize middleware for
logging, debugging, and
error handling effectively.
Implement error-handling
middleware to gracefully
manage errors and
exceptions. Optimize
application performance
through efficient coding
practices and resource
utilization.
Explain WebSockets'
purpose and identify
suitable use cases. Set up
Socket.io with Express to
enable real-time
communication between
client and server,
ensuring seamless data
exchange.

Use Case 1: Task
Management API.

Scenario: Imagine
you are building a
task management
application where
users can sign up, log
in, and manage their
tasks. Upon signing
up, users can create
tasks, update their
status (incomplete,
in-progress,
completed), delete
tasks, and view tasks
based on their status.
The API handles user
authentication
securely, ensuring
that only
authenticated users
can access task-
related endpoints.

Task: User
Authentication:
Create routes for
user sign-up, sign-in,
and sign-out.
Implement logic to
hash passwords
securely using bcrypt
and generate JWT
tokens for
authentication.
Task Management:
Define schemas and
models for tasks
using Mongoose.
Create routes for
creating, reading,
updating, and
deleting tasks.
Implement

functionality to
retrieve tasks based
on their status.
Security and
Validation:
Implement
middleware for
verifying JWT tokens
to protect
authenticated routes.
Validate user input
and ensure data
integrity and security
throughout the
application.
Testing and
Deployment: Test
the API endpoints
using tools like
Postman or
automated testing
frameworks. Deploy
the application to a
production
environment,
ensuring scalability
and performance
optimizations.

Use Case 2: User

Authorization

Scenario: A developer
wants to implement user
authentication and
authorization in their
web application using
JWT. They
choose Node.js with
Express.js for the
backend and MongoDB
as the database. This
allows users to securely
sign up, sign in, and
update their profile
information.

Task: Creating routes for
user authentication
(/user/signup,
/user/signin,
/user/update/:userMail).
Implementing controller
functions for handling
user signup, signin, and
update operations.
Implementing signup
(/user/signup) route to
create a new user in the
database after hashing
the password.
Implementing signin
(/user/signin) route to
authenticate users by
comparing hashed
passwords and issuing
JWT tokens.
Implementing update
(/user/update/:userMail)
route to allow users to
update their email
address after verifying
JWT token.
Generating JWT tokens
using jsonwebtoken

package after successful
user authentication
(signup and signin).
Implementing a
middleware (verifyUser)
to verify JWT tokens and
protect routes that
require
authentication
(/user/update/:userMail).

●

●

●

Logging,
debugging,
error handling.
Optimize
application
efficiency.
Understand
WebSockets.
Set up
Socket.io with
Express. Enable
real-time
client-server
communication.

●

●

●

Utilize middleware
effectively to log
relevant information
and debug issues within
Express.js applications.
Implement error-
handling middleware to
gracefully handle errors
and exceptions,
providing informative
responses to users.
Demonstrate techniques
to optimize application
performance, such as
efficient code design,
minimizing database
queries, and utilizing
caching mechanisms.
Understand the purpose
and benefits of
WebSockets in real-time
applications.Successfully
set up Socket.io with
Express to enable
bidirectional, real-time
communication between
clients and the server.
Implement features
leveraging real-time
capabilities effectively.

Use Case 1:
Backend Testing

Scenario: Picture
yourself creating a
web application that
demands user
authentication.
Users must be able
to sign up with a
valid email and
password, sign in
using their
credentials, and
access protected
routes. Your
application relies on
MongoDB as the
database,
Express.js for the
backend server, and
JWT for handling
authentication
tokens securely.
Your goal is to
ensure accurate
validation of user
inputs, secure
password hashing,
and a smooth,
dependable
authentication
process.

Task: Implement
User Routes: Create
Express.js routes for
user signup and
signin
functionalities.
Include validation
checks using
express-validator for
email format and
password length
during signup.
Implement logic to
hash passwords
using bcrypt before
storing them in the
database during
signup.
User Authentication
with JWT: Generate
JWT tokens upon
successful user sign
in.
Use JWT to
authenticate and
authorize user
access to protected
routes. Set up
middleware (e.g.,
verifyUser) to
validate JWT tokens
and grant access to
authenticated users.
Handle User
Requests:
Implement route
handlers for user
signup and signin
requests. Handle
errors and return
appropriate
responses for invalid
inputs, existing
users, and

authentication
failures.
Testing with Jest
and Supertest: Set
up Jest and
Supertest for
testing your API
endpoints. Write
unit and integration
tests

to ensure proper
functioning of user
signup, signin, and
authentication flows.
Test scenarios like
valid inputs, invalid
inputs, existing
users, successful
authentication, and
failed authentication.
Environment
Variables and
Security:
Use dotenv to
manage
environment
variables like
database URI, JWT
secret, etc. Ensure
sensitive information
(e.g., database
credentials, JWT
secret) is kept
secure and not
exposed in your
codebase. Use Case
2: Chat App

Scenario: A Company
is facing
communication
challenges due to the

inefficiency of email
communication,
leading to delays in
project coordination
and collaboration.
Abc decides to
implement a chat app
that allows
employees to
communicate in real-
time, and collaborate
on projects more
effectively. The app
will be accessible
desktop ensuring that
employees can stay
connected from
anywhere.
To achieve this, you
decide to use
Express.js to create a
server that serves
static files and
handles WebSocket
connections using
Socket.IO. You create
a basic
HTML/CSS/JavaScript
frontend where users
can input their
username, send
messages, and see
the chat history.
Overall, this
application provides a
seamless and
interactive chat
experience for users,
making it easy for
them to communicate
in real-time.

Task: User Register:
Allow users to set
name.

Real-time Messaging:
Enable users to send
and receive

messages instantly.
User Presence:
Display the
online/offline status
of users and show
when they are typing.
Message History:
Store and display
chat history, allowing
users to scroll
through past
messages.

TABLE 4: LIST OF FINAL PROJECTS (10 PROJECTS THAT
COMPREHENSIVELY COVER ALL THE

LEARNING OUTCOME)
SL.NO FINAL PROJECT

1 Excel Migration

2 File System Monitoring
3 Notes Taking App
4 CRUD Operations for task management
5 Event Management System
6 Schemas and Models
7 Task Management API
8 User Authorization
9 Backend Testing

10 Chat App

