

MERN Stack powered by Mongo DB

Course Objectives Course Outcomes

Comprehend Web Development

Architecture: Gain knowledge of

how frontend and backend

components interact &

Comprehension of the client-server

architecture.

Develop foundational skills in

frontend development by

mastering HTML/CSS basics,

advanced techniques like flexbox

and grid layouts, and DOM

manipulation in this introductory

Full Stack course.

Frontend Development with

React.js: Proficiency in building

user interfaces using React.js.

Exhibit essential JavaScript skills,

mastering variables, control flow

statements, ES6 features, and

asynchronous programming.

Implement to manipulate the DOM,

handle events, and create dynamic

web experiences.

Backend Development with

Node.js and Express.js:

Middleware and how it's used in

Express & Creating RESTful APIs

using Express.js.

Setup a development environment,

mastering JSX syntax, creating

reusable components, and efficiently

passing data using props. You'll

implement conditional rendering,

handle events, manage state, and

work with forms effectively.

Additionally, you'll optimize

performance using lifecycle methods

and explore React hooks for efficient

state management.

Database Management with

MongoDB: Designing and

implementing MongoDB

schemas.

Perform essential skills in Node.js

with this comprehensive course,

covering everything from setting up

Express.js environments to mastering

RESTful API development,

asynchronous programming, error

handling, debugging, and security

best practices, empowering you to

build robust and secure applications.

Full Stack Integration:

Connecting the frontend and

backend components of an

application.

Implement essential skills in

MongoDB with this course and

analyze the setup, schema building,

CRUD operations, optimization,

authentication, MERN performance,

and deployment strategies for React

and Node.js applications.

Asynchronous

Programming: Basics of

asynchronous programming in

JavaScript.

Performance Optimization:

Techniques for optimizing the

performance of both frontend and

backend code.

Course Duration: 45 Hours

Course Content:

Unit 1: Introduction to FSD, Basics Web Technologies and JavaScript

Intro to Fullstack – What is Frontend? – What is the backend? – Roles & Responsibility

for Full Stack Developer – Environment Setup - Introduction to HTML & CSS – Basic

elements, DOM- create/delete elements – Selectors –Advanced CSS techniques like

flexbox and grid - Introduction to Javascript – Variables, datatypes, and operators –

Control flow statements (if-else, for, while, switch)

Unit 2: ES6 Essentials

 Introduction to ES6 (let, const, template strings) – Arrow function – Spread operator –

destructing – Callback – Promise – JavaScript fundamentals: functions, objects, arrays

– Manipulating the DOM with JavaScript – Handling events and user interactions with

JavaScript.

Unit 3: React JS

Introduction to React and its features – Setting up a React development environment –

JSX syntax and its benefits – Creating React components – Creating reusable React

components – Using props to pass data between components – Creating conditional

rendering and handling events in React – React State, Event Handling & Forms –

Understanding state and its importance in React – Setting state and handling events in

React – Using forms and controlled components in React – Handling errors and edge

cases in React – Understanding the React lifecycle and its phases – Using lifecycle

methods to optimize performance – Introduction to React hooks – Implementing

custom hooks in React.

Unit 4: Node JS & Express JS

Introduction to Node.js and its features – Understanding the basics of web servers and

HTTP requests Setting up an Express.js development environment – Building a simple

Express.js server – Understanding the principles of RESTful APIs – Building CRUD

operations with Express.js - Implementing middleware in Express.js – Understanding the

Node.js event loop and asynchronous programming – Using callbacks, promises, and

async/await in Node.js – Handling errors and debugging Node.js applications –

Implementing security best practices in Node.js

Unit 5: MongoDB, Performance optimization & Deployment

Understanding NoSQL databases and MongoDB – Setting up a MongoDB development

environment – Building MongoDB schema and models with Mongoose – Using Mongoose

to perform CRUD operations in MongoDB – Understanding MongoDB indexing and

aggregation –Implementing authentication and authorization with MongoDB –

Techniques to optimize the performance of MERN applications, including code splitting

and lazy loading – Introduction to CI & CD pipelines – Deploying React applications using

hosting services – Deploying Node.js applications with server configurations.

Test Projects:

Use Cases

OVERALL COURSE LEARNING OUTCOME ASSESSMENT CRITERIA AND USE-CASES

LEARNING OUTCOME ASSESSMENT CRITERIA USE-CASES

● Implement
foundational skills in

frontend
development by

mastering
HTML/CSS basics,

advanced
techniques like
flexbox and grid

layouts, and DOM
manipulation in this

introductory Full
Stack course.

● Developing of
Frontend and
Backend: Assessing
the ability to

differentiate between
frontend and backend

development, and
describe the
responsibilities

associated with each
role.

● Proficiency in
HTML/CSS and DOM

Manipulation:
Evaluating
proficiency in

HTML/CSS
fundamentals,

including
creating/deleting
DOM elements, and

applying advanced
CSS techniques like

flexbox and grid
layouts.

Use Case 1: Personal Blog
Website.

Scenario: Sanjana is

passionate about cooking
and wants to share her

recipes, cooking tips, and
culinary adventures with the
world. She envisions a

personal blog website where
she can showcase her

content in an organized and
visually appealing manner.

She also aims to enhance her
digital presence through the
website.

Task: Design the website
layout using HTML and CSS to
ensure responsiveness across

various devices and screen
sizes. Apply responsive design

principles such as fluid grids,
flexible images, and media
queries to adapt the layout

dynamically. Create a visually
appealing design by

incorporating custom fonts,
colors, and graphics that reflect
Emily's culinary theme. Utilize

CSS styling techniques to
enhance the aesthetics of the

website, including typography,
spacing, and transitions.

Use Case 2: Online
Portfolio for a Freelance
Graphic Designer.

Scenario: Gopal is a freelance
graphic designer looking to

establish a strong online
presence and attract potential

clients. He wants to showcase
his portfolio of design projects,
including logos, branding

materials, and website designs,
in a professional and visually

compelling manner.

Task: Develop a responsive
online portfolio website using
HTML and CSS to effectively

showcase Gopal's design work
across various devices and

screen sizes. Implement a clean
and modern layout that
emphasizes visual elements

such as images, graphics, and
interactive design components.

Utilize CSS techniques to create
polished animations,
transitions, and hover effects

that enhance the user
experience and engage visitors

● Exhibit essential
JavaScript skills,
mastering

variables, control
flow statements,

ES6 features, and
asynchronous
programming.

Learn to
manipulate the

DOM, handle
events, and create
dynamic web

experiences.

● Demonstrate proficiency in
acquiring essential
knowledge for ES6 like

arrow functions, spread
operator, rest

operator,etc.

● Exhibit promises which will
help in understanding
asynchronous

programming. And also get
to know about Document

Object Model (DOM).

Use Case 1: Dynamic Event
Booking Website.

Scenario: Shyam is an event
organizer planning a series of

workshops and conferences.
He wants to create an
interactive website where

attendees can view upcoming
events, register for tickets, and

receive event updates in real-
time. He aims to build a user-
friendly platform that

dynamically updates event
information, handles user

registrations, and provides a
seamless booking experience
for attendees.

Task: Develop a dynamic
event booking website using

JavaScript DOM manipulation
to enhance interactivity and

functionality. Design a
responsive and visually
appealing layout that displays

upcoming events, event
details, and registration forms.

Utilize JavaScript to
manipulate the DOM elements

dynamically, updating event
information and user interface
elements in response to user

actions. Utilize DOM
manipulation techniques to

dynamically add, remove, or
modify HTML elements based
on user input or server

responses. Integrate form
validation using JavaScript to

ensure that user input is
accurate and complete before
submitting registration details.

Implement asynchronous
requests using AJAX to

communicate with the server,
fetch event data, and handle
registration submissions

without reloading the entire
page.

Use Case 2: Interactive Task
Management Application.

Scenario: Jessica is a project

manager overseeing multiple
teams and tasks. She needs a

centralized platform to manage
project workflows, assign tasks

to team members, and track
progress in real-time. Jessica
envisions an interactive task

management application that
allows users to create tasks, set

deadlines, assign priorities, and
collaborate with team members
seamlessly.

Task: Develop an interactive
task management application

using JavaScript DOM
manipulation to facilitate
efficient task tracking and

collaboration among team
members. Design a responsive

and intuitive user interface that
enables users to create, edit,
and delete tasks dynamically.

Utilize JavaScript to manipulate
the DOM elements in real-time,

updating task lists, statuses,
and details based on user
interactions and server

responses.

● Setup a
development
environment,

mastering JSX
syntax, creating

reusable
components, and
efficiently passing

data using props.
You'll learn to

implement
conditional
rendering, handle

events, manage
state, and work

with forms
effectively.
Additionally, you'll

optimize
performance using

lifecycle methods
and explore React
hooks for efficient

state management.

● Demonstration of React
Concepts: Assess the
implementation of JSX

syntax, component
creation, data handling

with props, state
management, form
usage, and

understanding of the
React lifecycle.

● Proficiency with React
Hooks: Evaluate the

adeptness in utilizing
React hooks,
encompassing both

built-in and custom
hooks, for effective state

management and
performance
optimization in React

applications.

Use Case 1: Online Learning
Platform like MOOC.

Scenario: A client wants to

create an interactive learning
platform where students can

enroll in courses, access
instructional materials,
participate in quizzes and

assignments, and engage
with instructors and peers in

discussion forums. The client
envisions a modern and

user-friendly platform that
offers a seamless learning
experience with interactive

content and personalized
learning paths.

Task: Develop an online
learning platform using

React.js. Design a responsive
and visually appealing user

interface that allows students
to browse, search, and enroll
in courses, as well as track

their progress and
achievements across different

devices and screen sizes.
Implement
client-side routing using React

Router to enable navigation
between different views within

the application, such as course
catalog, course details, user
profile, and discussion forums.

Utilize state management
libraries like Context API to

manage application state,
including course data, user
authentication, and user

progress, ensuring
consistency and

synchronization across
different components.
Integrate API calls to fetch

course data from a backend
server (you can use free to use

api from the internet), handle
CRUD operations.

Use Case 2: Fitness Tracking

Application.

Scenario: Ravi is a fitness

enthusiast who wants to track

his workouts, set fitness goals,
and monitor his progress over
time. He envisions a

comprehensive fitness
tracking application that

allows him to log his exercises,
record his nutrition intake,
track his weight and body

measurements, and visualize
his progress through charts

and graphs. Ravi wants a
user-friendly platform that
offers a seamless experience

across different devices and
provides actionable insights to

help him achieve his fitness
goals effectively.
Task: Design a responsive and

visually appealing user
interface that allows users to

log workouts, record nutrition
intake, track weight and body
measurements, and view

progress charts and graphs
across different devices and

screen sizes. Utilize React
components to modularize the
application's UI elements,

including workout logs,
nutrition tracker, progress

charts, and user settings,
making it easier to manage and
scale the application.

Implement client-side routing
using React Router to enable

navigation between different
views within the application,

such as workout log, nutrition
tracker, progress dashboard,
and user profile pages. Utilize

state management libraries
like Context API to manage

application state, including
user data, fitness logs, and
progress metrics, ensuring

consistency and
synchronization across

different components.
Integrate third-party APIs or
libraries for fitness tracking,

nutrition data, and weight
management to provide users

with accurate and up-to-date
information for tracking their
fitness goals.

● Perform essential
skills in Node.js with
this comprehensive

course, covering
everything from

setting up
Express.js
environments to

mastering RESTful
API development,

asynchronous
programming, error
handling,

debugging, and
security best

practices,
empowering you to
build robust and

secure applications.

● Delve into the backend
technology and get familiar
with Node js by making a

server.
● Gain hands-on

experience in
implementing and
building RESTful APIs.

● Acquire a deep
understanding of streams

in Node js. And also the file
system and operating
system methods.

Use Case 1: Online
Marketplace API.

Scenario: Samantha is an
entrepreneur who wants to

create an online marketplace
platform where users can buy

and sell products within specific
categories. She envisions a
platform similar to flipkart or

amazon, where sellers can
create listings for their

products, manage inventory,
and communicate with buyers,
while buyers can browse

products, make purchases, and
provide feedback.

Task: Develop an online
marketplace platform using

Node.js and Express.js to
facilitate buying and selling of
products for users. Design a

robust and scalable backend
architecture that handles user

authentication, product
listings, inventory
management, order

processing, and
communication between

buyers and sellers.
Implement RESTful API

endpoints using Express.js to
handle CRUD operations for
managing users, products,

orders, and transactions,
ensuring secure data exchange

between the client and server.
Utilize middleware functions in
Express.js to implement

authentication and
authorization.

Use Case 2: Task
Management API.

Scenario: Emily is a project

manager overseeing multiple
teams and projects within her
organization. She needs a

centralized platform to
manage tasks, deadlines, and

team collaboration efficiently.
Emily envisions a RESTful API
that her team can integrate

into their existing project

management tools, allowing
them to create, update, and
track tasks programmatically.

Task: Develop a task
management API using Node.js

and Express.js to provide CRUD
operations for managing tasks

and facilitating team
collaboration for users like
Emily. Design a robust and

scalable backend server using
Node.js and Express.js to

handle HTTP requests, route
them to the appropriate
endpoints, and interact with the

database.
Implement RESTful API

endpoints using Express.js to
handle CRUD operations for
managing tasks, task

assignments, deadlines,
priorities, and task statuses,

ensuring consistent and
predictable behavior for client

applications. Utilize middleware
functions in Express.js to
implement authentication and

authorization mechanisms. And
use databases like Firebase as

it is easier to set up for small
tasks.

● Implement

essential skills
in
MongoDB with
this
course. Learn

setup,
schema building,

CRUD
operations,
optimization,

authentication,
MERN

performance,
and
deployment

strategies
for React and

Node.js
applications.

● Ability to explain the

concept of document-
oriented databases and

contrast them with
traditional relational
databases.

● Proficiency in
understanding
MongoDB's data model,

including collections,
documents, and fields.

● Familiarity with MongoDB's
query language (MongoDB

Query Language) and its
syntax for CRUD (Create,
Read, Update, Delete)

operations.
● Ability to explain the

concept of schema-

less data models and
understand how they
differ from schema-

based models.

Use Case 1: Online Bookstore
Application.

Scenario:

Sunny is an entrepreneur who
wants to launch an online
bookstore where users can

browse, purchase, and review
books from various genres. He

envisions a platform similar to
Amazon, offering a vast
selection

of books, personalized
recommendations, and

seamless
checkout experiences. He needs
a scalable and flexible database

solution to store book
information, user profiles, order

details, and reviews efficiently

● Proficiency in designing and

working with flexible

schemas in MongoDB,
including dynamic schema

changes and performing
CRUD operations.

Task: Develop an online
bookstore application using

MongoDB to manage book data
and facilitate e-commerce
transactions for users like Alex.

Design a backend architecture
that integrates MongoDB as the

primary database to store and
manage book information, user
profiles, order details, and

reviews. Implement MongoDB
collections for storing data

entities such as books, users,
orders, and reviews. Utilize
MongoDB's flexible schema

design to accommodate diverse
book metadata such as title,

author, genre, publication date,
ISBN, and cover image URL,
allowing for easy querying and

indexing of book data.
Implement CRUD operations

using MongoDB's native
drivers or an ORM (Object-
Relational Mapping) library like

Mongoose to interact with the
database, allowing users to

browse, search, and purchase
books seamlessly.

Use Case 2: Online Auction
Platform.

Scenario: Mark is an

entrepreneur who wants to
create an online auction
platform where users can buy

and sell a variety of items
through bidding. He envisions

a platform similar to eBay,
where users can list items for
auction, place bids on items,

and monitor auction progress
in real-time. Mark needs a

scalable and flexible database
solution to store item listings,
bid history, user profiles, and

transaction details securely.

 Task: Design a backend

architecture that
integrates MongoDB as
the primary database to

store data entities such
as items, bids, users,

transactions, and
relationships between
them. Implement

MongoDB collections for
storing item listings, bid

history, user profiles,
transaction details, and
other auction-related

data, ensuring data
consistency and

scalability as the
platform grows. Utilize
MongoDB's flexible

schema design to
accommodate diverse

item data such as title,
description, images,
starting price, bid

history, and user
information, allowing for

easy querying and
indexing of auction data.

Implement CRUD
operations using
MongoDB's native

drivers or an ORM
(Object-Relational

Mapping) library like
Mongoose to interact
with the database,

allowing users to list
items for auction, place

bids on items, and
manage their auction
activities seamlessly.

Utilize MongoDB's
aggregation framework

to perform complex
queries and
aggregations, such as

calculating highest bids,
generating auction

analytics, and
identifying trending
items based on user

activity.

