COURSE NAME:	EV Battery Management System
TOTAL DURATION:	45 Hrs
MODE OF DELIVERY	PHYSICAL CLASSROOM TRAINING AT
	RESPECTIVE COLLEGES
TRAINER TO	1:50
STUDENT RATIO:	
TOTAL MARKS:	75

Table 1				
OVERALL	1. Analyze Battery Technologies and Chemistry:			
COURSE	Evaluate the principles of lithium-ion and			
OBJECTIVE	alternative battery chemistries, and deconstruct			
OBSECTIVE.	the structural and operational characteristics of			
	cells, modules, and battery packs to identify			
	performance implications in EV applications.			
	2. Design and Optimize BMS Architectures:			
	Develop and apply advanced concepts of			
	centralized, modular, and distributed BMS			
	implementing critical RMS functions such as			
	monitoring protection balancing and			
	communication			
	3. Implement Advanced Battery State			
	Estimation Techniques: Design and execute			
	State of Charge (SoC), State of Health (SoH), and			
	State of Power (SoP) estimation models to			
	enhance battery diagnostics and predictive			
	capabilities.			
	4. Evaluate Thermal Management Systems:			
	Design and critically assess thermal management			
	solutions to optimize battery safety and			
	performance, integrating advanced methods for			
	efficient heat dissipation and temperature			
	regulation in EV batteries.			
	5. Integrate Cell Balancing for Enhanced			
	Performance: Formulate and implement cell			
	balancing methodologies that ensure uniform			
	charge distribution, extend battery life, and			
	maintain consistent energy output under varying			
	operational conditions.			

LEARNING OUTCOME:	 Demonstrate Battery Technologies: Demonstrate the ability to critically evaluate and differentiate between various battery chemistries and configurations, assessing their suitability for specific EV applications.
	2. Design Robust BMS Systems : Create and optimize battery management system (BMS) architectures by integrating monitoring, protection, balancing, and communication functions to meet industry standards and safety requirements.
	3. Develop and Validate State Estimation Models: Construct and validate accurate State of Charge (SoC), State of Health (SoH), and State of Power (SoP) estimation models, leveraging advanced analytical and computational techniques for improved battery management.
	4. Optimize Thermal Management Strategies : Design and implement innovative thermal management systems, applying engineering principles to enhance battery safety, efficiency, and performance under diverse operating conditions.
	5. Apply Advanced Cell Balancing Techniques : Devise and execute cell balancing strategies that improve energy consistency and longevity in battery systems, demonstrating proficiency in addressing real-world challenges in battery pack operations.

TABLE 2: MODULE-WISE COURSE CONTENT AND OUTCOME				
SL. NO	MODULE NAME	MODULE CONTENT	MODULE LEARNING OUTCOME	DURAT ION (HRS)
1	Fundamen tals of Lithium- Ion Batteries and Performan ce Factors	 Lithium-Ion Battery Chemistry Battery Parameters Battery Performance 	1. Analyze the chemical composition and properties of lithium-ion batteries to determine their suitability for EV	8 Hrs

		Factors	applications.	
		4. Thermal Behavior of Li-Ion Cells	2. Evaluate key battery parameters such as capacity, voltage, and energy density, and correlate them with performance outcomes.	
			3. Assess the factors influencing battery efficiency and longevity, including charge- discharge cycles and thermal behavior.	
			4. Design basic strategies to mitigate performance degradation under varying operational conditions.	
2	Battery Cell Balancing and Thermal Manageme nt	 Importance of Cell Balancing Types of Balancing Cell Balancing Algorithms Balancing Circuit Design Thermal Management Strategies 	 Design effective cell balancing techniques, including passive and active balancing, to optimize battery performance. Develop algorithms and circuit designs for efficient cell balancing in multi-cell battery 	9 Hrs

		6. Heat Generation and Dissipation	 packs. 3. Evaluate the impact of thermal management strategies on the safety, performance, and lifespan of lithium-ion batteries. 4. Integrate thermal behavior modeling with heat dissipation techniques to improve system reliability under extreme conditions. 	
3.	Battery Manageme nt Systems and Architectur e	 Overview of Battery Technology in EVs Role and Importance of a BMS BMS Components Types of BMS Architectures BMS Topology in EVs Battery Pack Design and Integration 	 Design a comprehensive battery management system (BMS) incorporating components like sensors, controllers, and communication modules. Analyze different BMS architectures (centralized, modular, and distributed) and determine their application- specific advantages. Synthesize battery pack designs with 	10 Hrs

			appropriate integration of BMS components to meet safety and performance standards.	
			 Critically evaluate BMS topologies for their adaptability and scalability in electric vehicle systems. 	
4	State Estimation Technique s and Diagnostic s	 State of Charge (SoC) Estimation State of Health (SoH) Estimation State of Power (SoP) Estimation Diagnostics and Fault Detection Data Acquisition and Signal Processing 	 Develop and validate accurate models for State of Charge (SoC), State of Health (SoH), and State of Power (SoP) estimation using computational tools. Apply diagnostic techniques to identify and predict faults within battery systems, ensuring proactive maintenance. 	10 Hrs
			 3. Evaluate data acquisition and signal processing methods for precise monitoring of battery voltage, temperature, and current. 4. Create fault-detection 	

			algorithms that enhance battery reliability and performance under diverse operating conditions.	
5.	Advanced Monitoring and Circuit Design	 Voltage, Temperature, and Current Sensing Electrical Circuit Design for BMS Thermal Modeling 	 Design advanced electrical circuits for battery monitoring systems, ensuring compatibility with real-time sensing technologies. Integrate voltage, temperature, and current sensing mechanisms with BMS for accurate performance tracking. Construct thermal models that predict and mitigate overheating risks in complex battery systems. Optimize the interaction between sensing and control units to improve overall battery performance and efficiency. 	8 Hrs

TABLE 3: OVERALL COURSE LEARNING OUTCOME ASSESSMENT					
	CRITERIA AND USE CASES				
LEARNING	ASSESSMENT	PERFORMANCE	USE CASES		
OUTCOME	CRITERIA	CRITERIA	—		
principle of lithium-ion cells (anode, cathode,	the ability to use BMS data to analyze battery	1.Monitoring Accuracy: Accurately	Management and Predictive Maintenance		
electrolyte, separator).	health and identify early signs of	monitors and records SoC, voltage and	BMS plays a critical		
2. Characteristics of Li-ion batteries (energy density, thermal stability, cycle life)	degradation. 1.Data Analysis: Interprets SoC and cycle life data to assess	temperature data from the BMS of a fleet vehicle over a defined period.	battery health, state of charge (SoC), and cycle life in fleet vehicles. Through predictive maintenance, BMS		
3. Voltage, current, state of charge (SoC), state of health (SoH), depth of	battery usage patterns and schedule timely maintenance.	2.Fault Prediction: Successfully predicts potential battery	can analyze battery degradation patterns and usage cycles to schedule maintenance before		
discharge (DoD), and temperature 4. Impact of temperature, charging rate, and discharge cycles	2.Predictive Modeling: Creates predictive maintenance schedules using	degradation issues based on historical and real-time usage data.	issues arise		
on battery performance	analytical tools based on degradation patterns and usage cycles.	3.Maintenance Scheduling: Develops a well- structured maintenance plan			
	3.Implementatio n Strategy: Proposes actionable maintenance plans aligned with fleet	incorporating predictive analysis, demonstrating a reduction in downtime.			
	operational demands.	4.Optimization Impact: Evaluates the effectiveness of the predictive maintenance strategy by			

		comparing performance metrics before	
		and after	
1.Prevent	1.Thermal	1.Temperature	Thermal
overcharging and	Behavior	Monitoring:	Management in
undercharging,	Analysis:	Accurately	High-
improving	Demonstrates	monitors and	Performance Evs
ensuring uniform	analyze thermal	temperature	High-performance
performance.	behavior in high-	variations in FV	FVs generate
	performance EV	batteries during	significant heat due
2. Passive	batteries during	high-power	to the rapid
balancing vs.	rapid discharge	discharges using	discharge of power.
active balancing.	scenarios.	BMS data.	BMS monitors and
		2.11.1	regulates battery
3. Algorithms for	2.System	2.Heat	temperature using
based on cell	a thermal	Strategies	management
voltages and SoC.	management	Designs and	systems to ensure
	strategy	implements	safe operating
4. Design and	leveraging BMS	cooling or heat	conditions,
implementation of	to regulate	dissipation	improving
circuits for cell	temperature	systems that	performance during
balancing in EV	high-speed	hattery within	nigh-speed driving
	operations.	safe operational	
		temperature	
	3.Integration of	limits.	
	Thermal Models:		
	Develops and	3.Thermal Model	
	applies thermal	Accuracy:	
	heat generation	models that	
	and dissipation	successfully	
	accurately under	predict	
	dynamic	temperature	
	conditions.	fluctuations	
	1.0.0	under varying	
	4.Safety and	validated against	
	Evaluation	experimental	
	Evaluates the	data.	
	impact of		
	implemented	4.Performance	
	thermal	Improvement:	
	management	Demonstrates an	
	strategies on	improvement in	

	battery safety and performance metrics.	battery safety and sustained performance during high- speed driving through effective thermal management. 5.Operational Safety: Ensures the system operates within industry safety standards, mitigating risks of overheating and thermal	
 Types of batteries used in EVs (Lithium-Ion, Solid-State, etc.). Basics of battery chemistry, cell structure, and charging/dischargi ng processes. 	1. Battery Types: Demonstrates the ability to differentiate between lithium- ion, solid-state, and other battery types, identifying their applications in EVs	runaway 1.Battery Type Identification: Accurately identifies battery types and evaluates their advantages and limitations for specific EV applications.	
 Functions of a BMS: protection, monitoring, and balancing. Safety and reliability factors in EV batteries. Learning on sensors, microcontrollors 	2. Battery Chemistry: Analyze the basics of battery chemistry, including cell structure and charging/dischar ging processes.	2.Battery Chemistry Application: Examine the impact of cell chemistry and structure on battery performance and efficiency in EVs.	
communication interfaces, and power management circuits	3.BMS Functions: Identifies and explains the functions of a BMS, such as protection, monitoring, and balancing.	3.BMS Functions Evaluation: Demonstrates the ability to design or simulate a simple BMS system incorporating	

	4.Application of Safety Concepts: Demonstrates safety and reliability considerations in EV batteries, including sensor and circuit integration.	protection, monitoring, and balancing features. 4.Sensor and Circuit: Integrates sensors, microcontrollers, and communication interfaces into a basic power management circuit for battery monitoring.	
1. Techniques for SoC estimation: coulomb counting, open-circuit voltage, and model-based estimation.	1.SoC Estimation Techniques: Applies coulomb counting, open- circuit voltage, and model-based methods for	1.SoC Calculation: Correctly implements SoC estimation techniques in simulated or	
2. Methods to monitor battery	estimating SoC. 2.Battery	real-world scenarios.	
degradation and predict end-of-life.	Degradation Monitoring:	2.Degradation Tracking: Analyzes	
3. Parameters affecting SoH: capacity fade, impedance growth.	techniques to monitor battery degradation and predict end-of- life accurately.	degradation patterns using BMS data and proposes maintenance schedules based	
4. Estimating power availability based on battery	3.Analysis of SoH Parameters: Evaluates	on end-of-life predictions.	
conditions and application needs.	capacity fade and impedance growth to determine battery health.	3.Health Parameter Evaluation: Correlates capacity fade and impedance growth to	
	Availability Estimation: Estimates	operational performance and proposes	

	available power based on battery conditions and application needs.	corrective actions. 4.Power Prediction Accuracy: Uses analytical tools to accurately predict power availability under various operational conditions.	
 How temperature affects battery performance and safety. Passive cooling, active cooling (liquid, air), and phase-change materials. 	 1.Impact of Temperature: Explains how temperature variations affect battery performance and safety. 2.Cooling Techniques: Compares 	1.Temperature Analysis: Accurately assesses the effects of temperature on battery performance using case studies or real- time data.	
 Use of thermal models to predict and manage cell temperatures. Design considerations for heat generation during charge/discharge cycles. 	passive cooling, active cooling (liquid and air), and phase- change materials for thermal management. 3.Thermal Model Usage: Develops and applies	2.Cooling Strategy Selection: Selects and justifies the most suitable cooling technique for a given EV application scenario.	
	thermal models to predict cell temperature during charge/discharge cycles. 4.Heat Generation Design: Designs strategies to manage heat generation	 3.Thermal Model Implementation: Creates and validates thermal models to predict temperature changes under varying operating conditions. 4.Heat Mitigation Design: Designs an efficient 	

			1
	during battery	thermal	
	operation.	management	
		system that	
		minimizes heat-	
		related	
		performance	
		issues during	
		operation	
1 Importance of	Compatibility	Battory Health	Battery Swapping
nrocico concing	Accoccmont	Evaluation	and Modular
and monitoring for	Assessment.	Lvaluation.	Battony
		identifies bettem	Managamant
sale operation.	The ability to use	identifies battery	management
			Tra EV (h a th a m s
2. Methods for	verify the	suboptimai	In EV battery
measuring	compatibility of	health or	swapping stations,
voltage, current,	battery packs	potential faults,	BMS is used to
and temperature.	with different EV	ensuring only	monitor the health,
	models and	functional	SoC, and
3. How BMS	swapping	batteries are	compatibility of
collects and	stations.	deployed.	individual battery
processes data		SoC	packs. It ensures
from sensors.	SoC Analysis:	Compatibility:	that only fu
	Accurately	Confirms that	
4. Methods for	evaluates the	swapped battery	
detecting common	State of Charge	packs have	
faults (over-	(SoC) of	sufficient charge	
voltage, under-	individual battery	levels to meet	
voltage,	packs to ensure	immediate	
overheating).	readiness for	operational	
	deployment.	needs without	
5. Algorithms for		overloading or	
fault detection and	Health	underutilizing	
error reporting.	Monitoring:	resources.	
	Analyzes battery	Swapping	
	health	Process	
	parameters	Automation:	
	(State of Health,	Demonstrates	
	temperature,	the use of BMS	
	cycle count) to	for automating	
	determine the	battery	
	suitability of	compatibility	
	batteries for	checks, reducing	
	reuse or	swapping time,	
	replacement.	and minimizing	
		manual	
	Modular	intervention.	
	Integration:	System	
	Designs a system	Scalability:	
	for managing	Designs and	

modular battery	tests a modular	
packs in real-	BMS system that	
time to support	can efficiently	
seamless	manage multiple	
swapping	battery packs	
operations.	across various	
	vehicle types and	
Operational	swapping	
Efficiency	stations.	
Evaluation:	Safety	
Assesses the	Assurance:	
efficiency and	Ensures swapped	
reliability of	batteries meet	
battery swapping	safety and	
processes based	thermal	
on BMS	standards during	
integration and	installation,	
usage data.	transport, and	
	operation.	

TABLE 4: LIST OF FINAL PROJECTS THAT COMPREHENSIVELY COVER ALL THE LEARNING OUTCOME				
SL. NO	FINAL P	PROJECT		
		 Design effective cell balancing techniques, including passive and active balancing, to optimize battery performance. 		
1.	Battery Cell Balancing Circuit Design	 Create fault-detection algorithms that enhance battery reliability and performance under diverse operating conditions. 		
		 Design advanced electrical circuits for battery monitoring systems, ensuring compatibility with real-time sensing technologies. 		
2.	State of Charge (SoC) Estimation Model	 Develop and validate accurate models for State of Charge (SoC), State of Health (SoH), and State of Power (SoP) 		

		estimation using computational tools.
		 Evaluate data acquisition and signal processing methods for precise monitoring of battery voltage, temperature, and current.
		 Integrate voltage, temperature, and current sensing mechanisms with BMS for accurate performance tracking.
		 Evaluate the impact of thermal management strategies on the safety, performance, and lifespan of lithium-ion batteries.
3.	Thermal Management System Prototype	 Integrate thermal behavior modeling with heat dissipation techniques to improve system reliability under extreme conditions.
		 Construct thermal models that predict and mitigate overheating risks in complex battery systems.
		 Apply diagnostic techniques to identify and predict faults within battery systems, ensuring proactive maintenance.
4.	Battery Fault Detection System	 Create fault-detection algorithms that enhance battery reliability and performance under diverse operating conditions.
		 Design advanced electrical circuits for battery monitoring systems, ensuring

		compatibility with real-time sensing technologies.
		 Evaluate key battery parameters such as capacity, voltage, and energy density, and correlate them with performance outcomes.
5.	Battery Pack Capacity Estimation	 Synthesize battery pack designs with appropriate integration of BMS components to meet safety and performance standards.
		 Develop and validate accurate models for State of Charge (SoC), State of Health (SoH), and State of Power (SoP) estimation using computational tools.
		 Assess the factors influencing battery efficiency and longevity, including charge- discharge cycles and thermal behavior.
6.	Battery Life Prediction	 Develop and validate accurate models for State of Charge (SoC), State of Health (SoH), and State of Power (SoP) estimation using computational tools.
		 Apply diagnostic techniques to identify and predict faults within battery systems, ensuring proactive maintenance.
7.	Integration with EV Systems	 Design a comprehensive battery management system (BMS) incorporating components like sensors, controllers, and

		communication modules.
		 Analyze different BMS architectures (centralized, modular, and distributed) and determine their application- specific advantages.
		 Critically evaluate BMS topologies for their adaptability and scalability in electric vehicle systems.
		 Synthesize battery pack designs with appropriate integration of BMS components to meet safety and performance standards.
8.	Battery Pack Modelling	 Construct thermal models that predict and mitigate overheating risks in complex battery systems.
		 Optimize the interaction between sensing and control units to improve overall battery performance and efficiency.
		 Evaluate key battery parameters such as capacity, voltage, and energy density, and correlate them with performance outcomes.
9.	Battery Pack Energy Efficiency Analysis	 Assess the factors influencing battery efficiency and longevity, including charge- discharge cycles and thermal behavior.
		 Optimize the interaction between sensing and control units to improve overall battery performance and

		efficiency.
10	Overcurrent Protection System	 Design a comprehensive battery management system (BMS) incorporating components like sensors, controllers, and communication modules.
		 Create fault-detection algorithms that enhance battery reliability and performance under diverse operating conditions.
		 Integrate voltage, temperature, and current sensing mechanisms with BMS for accurate performance tracking.

TABLE 5: COURSE ASSESSMENT RUBRICS (TOTAL MARKS: 75)					
ASSESSMENT	DESCRIBE THE CRITERIA OF THE BELOW				
CRITERIA	CATEGORY PERFORMANCE				
	FAIR (1-5	FAIR (1-5 GOOD (6-10 EXCELLE		Total	
	Marks)	Marks)	15 marks)	Marks	
Demonstrate	Analyze basic	Illustrate the	Analyze and	15	
Battery	components	factors affecting	evaluate how		
Technologies	and	battery	lithium-ion battery		
	properties of	efficiency with	properties		
	lithium-ion	examples.	influence EV		
	batteries.		applications.		
Design	Exhibit basic	Illustrate	Design and	15	
Robust BMS	cell balancing	methods for	optimize		
Systems	and thermal	implementing	innovative		
	management	basic cell	solutions for cell		
concepts. balancing and		balancing and			
temperature		thermal			
control		management in			
		strategies.	EVs.		
Develop and	Recognize	Develop a BMS	Evaluate and	15	
Validate	primary	architecture	optimize a		
State	components	with proper	comprehensive		

	1			
Estimation	of a BMS	monitoring and	BMS architecture	
Models	architecture.	protection	meeting industry	
		functions.	standards.	
Optimize	Analyze	Apply state	Construct and	15
Thermal	definitions of	estimation	validate advanced	
Management	SoC, SoH,	models for basic	state estimation	
Strategies	and SoP	diagnostics and	models using	
	estimation	performance	computational	
	techniques.	analysis.	techniques.	
Apply	Develop key	Develop a	Innovate and	15
Advanced	elements in	battery circuit	implement	
Cell	battery circuit	with standard	advanced	
Balancing	design	monitoring	monitoring	
Techniques		features.	systems with	
			enhanced safety	
			and efficiency	
			features.	