ANNEXURE: 1 MODULE WISE COURSE CONTENT AND OUTCOME

SL.N O	MODULE NAME	MODULE CONTENT	MODULE LEARNING OUTCOME	DURATI ON (HRS)
1	Understanding Speech Recognition Basics	- Define speech recognition and its real-world applications (e.g., voice assistants, transcription services).	- Understand the core concepts and applications of speech recognition.	5
		- Describe the components of a speech recognition system (acoustic models, language models, and decoders).	 Recognize the components of a speech recognition system. Identify the 	
		- Identify challenges in speech recognition (noise, accents, homophones).	challenges faced in speech recognition.	
2	Signal Processing for Speech Recognition	- Apply techniques such as noise reduction and speech enhancement on raw audio signals.	preprocess and	5
		- Demonstrate the extraction of features like Mel-frequency cepstral coefficients (MFCCs).	techniques for noise reduction	
		- Implement methods for voice activity detection (VAD).	- Use VAD for separating speech from background noise.	
3	Acoustic Modeling in Speech Recognition	 Explain the role of hidden Markov models (HMMs) in acoustic modeling. Train a simple acoustic model using a 	- Understand how acoustic models are trained and used in speech recognition.	5

		speech corpus and evaluate its accuracy. - Discuss deep learning-based models in modern speech recognition.	 Train and evaluate an acoustic model. Explore the role of deep learning in speech recognition. 	
4	Language Models and Speech Recognition	 Define the role of n- gram models in language modeling for speech recognition. Implement and train a basic language model using a text corpus. Integrate the language model with an acoustic model. 	 Understand the role of language models in improving speech recognition accuracy. Implement and train basic language models. Integrate language models with acoustic models. 	4
5	Speech Recognition Algorithms	 Compare and contrast traditional speech recognition algorithms (e.g., dynamic time warping, HMM) with modern approaches (e.g., deep learning). Implement a basic speech-to-text system using a machine learning algorithm. Evaluate algorithm performance. 	 Understand different speech recognition algorithms and their applications. Implement a basic speech-to- text system. Evaluate the performance of speech recognition algorithms. 	4
6	Deep Learning in Speech Recognition	 Understand the role of CNNs and RNNs in speech recognition tasks. Train a deep neural network for speech 	- Learn how deep learning techniques like CNNs and RNNs are used in speech	5

		recognition using a large-scale dataset. - Fine-tune pre-trained models for specific applications.	recognition. - Train and fine- tune deep learning models for speech recognition tasks.	
7	Speaker Adaptation in Speech Recognition	 Explain the process of speaker adaptation. Implement a speaker adaptation technique such as Maximum Likelihood Linear Regression (MLLR). Evaluate the improvement in accuracy after applying speaker adaptation. 	 Understand the process of speaker adaptation in speech recognition. Implement speaker adaptation techniques. Evaluate accuracy improvements with speaker adaptation methods. 	4
8	Handling Accents and Dialects	 -Identify challenges caused by accents and dialects in speech recognition. Use data augmentation techniques to train models for different accents. Evaluate system performance on multi-accent datasets. 	 Explore methods to improve speech recognition for accents and dialects. Use data augmentation to handle different accents. Evaluate system performance for multi-accent datasets. 	4
9	Real-time Speech Recognition Systems	- Implement a real- time speech-to-text system using libraries like Google Speech API or CMU Sphinx.	 Develop real- time speech-to- text systems. Optimize systems for low- 	5

		 Optimize systems for low-latency processing in real-time applications. Integrate speech recognition into real- world applications. 	latency. - Integrate speech recognition into practical applications like voice assistants and transcription services.	
10	Hands-on Capstone Project	 Define the scope and requirements of a speech recognition project. Implement signal processing, acoustic modeling, and language modeling. Build and deploy a real-time or batch speech recognition system. 	 Apply concepts from previous modules to develop a complete speech recognition system. Implement signal processing, acoustic and language modeling. Deploy a working speech recognition system. 	5

ANNEXURE : 2 Industry Use Cases/Final Projects

LEARNING OUTCOME	ASSESSMENT CRITERIA	PERFORMANCE CRITERIA	USECASES
Use speech recognition to enable hands- free interaction with digital devices, allowing users to control their phones, smart speakers, and other smart devices using voice commands.	core concepts of speech recognition in real-world applications such as voice assistants.	-Define speech recognition and its real-world applications (e.g., voice assistants, transcription services). -Explain the role of hidden Markov models (HMMs) in acoustic modeling. -Implement a basic speech-to-text system using a machine learning algorithm. -Integrate speech recognition into a real-world application, such as a voice assistant or transcription service.	(e.g., Siri, Alexa): Enable hands-free interaction with devices. Voice-controlled Smart Homes: Control home devices such as lights, thermostats, and security systems. Voice Commands for Gaming: Enhance user interaction in games by using voice commands. Voice-enabled Appliances: Control
Automate the transcription of spoken content from meetings or conferences into text, making it easier to create records of discussions for later reference.	Apply signal processing techniques for noise reduction and speech	such as noise reduction and speech enhancement on raw audio signals.	Services for Meetings and Conferences: Automate transcription of spoken content for records. Real-time Subtitling for Live Events: Provide transcription of live webinars, lectures, or broadcasts. Speech Recognition for Accessibility (e.g., for the Hearing Impaired): Provide spoken-to- text conversion for

		or CMU Sphiny	
Develop systems that allow users to control home devices through voice commands, enhancing convenience and accessibility.	speech recognition with IoT devices. Compare traditional and modern approaches to speech recognition. Implement low- latency processing in real-time applications.	or CMU Sphinx. -Define speech recognition and its real-world applications. -Compare traditional speech recognition algorithms with modern approaches. - Integrate speech recognition into a real-world application, such as a voice assistant or smart home system.	Voice-controlled Smart Homes: Control home devices like lights, thermostats, and security systems using voice commands. Voice-enabled Navigation Systems for Vehicles: Control navigation and GPS using voice commands.
Use speech recognition to verify or identify users based on their voice, adding an extra layer of security.	Understand speaker adaptation techniques for improving authentication accuracy. Implement speaker recognition methods such as Maximum Likelihood Linear Regression (MLLR).	-Explain the process of speaker adaptation in speech recognition. -Implement a speaker adaptation technique such as MLLR. -Optimize speech recognition systems for low-latency processing in real- time applications.	Voice-based Authentication (Speaker Recognition): Use voice recognition for secure authentication in devices or applications. Personalized Voice Assistants for Elderly: Tailor voice- enabled systems to assist elderly users.
Provide real- time transcription during live events, improving accessibility for people with hearing impairments.	Implement signal processing for background noise reduction and voice activity detection. Apply language models to enhance transcription accuracy in real- time scenarios.	-Apply techniques such as noise reduction and speech enhancement on raw audio signals. -Integrate the language model with an acoustic model to improve transcription accuracy. -Implement a real- time speech-to-text system using popular libraries like Google Speech API.	Real-time Subtitling for Live Events: Provide live transcription during webinars, lectures, or news broadcasts.
Develop systems that	Understand the integration of	-Discuss the use of deep learning-based	Language Translation via

transcribe spoken words and then translate them into another language, enabling seamless communication.	speech recognition with translation systems. Implement a multilingual speech recognition system.	models in modern speech recognition. -Implement and train a basic language model using a text corpus. -Integrate speech recognition into real-world applications like translation systems.	Speech: Transcribe and translate spoken words into another language. Real-time Speech- to-Speech Translators: Facilitate seamless communication between people speaking different languages.
Enable users to dictate text without using hands, useful for multitasking or driving.	Implement a speech-to-text system for hands-free text entry. Evaluate the accuracy of a speech recognition algorithm in real- world tasks.	-Define speech recognition and its real-world applications. -Implement a basic speech-to-text system using a machine learning algorithm. -Integrate speech recognition into real-world applications like voice-based writing systems.	Voice-to-Text for Hands-Free Writing: Enable hands-free writing of documents, emails, or notes.
Automate customer support services using voice recognition to handle customer queries and requests.	Use deep learning models for efficient voice recognition in customer service. Integrate a virtual assistant into customer support systems.	-Define the role of n-gram models in language modeling. -Fine-tune pre- trained models for specific speech recognition applications. -Integrate speech recognition into a real-world application, such as a virtual customer support system.	Virtual Customer Support Systems: Automate customer queries and requests.
Convert spoken medical notes and patient interactions into structured text to reduce administrative workload in healthcare.	Implement voice activity detection and background noise reduction in medical settings. Integrate language models for accurate medical	-Implement methods for voice activity detection (VAD) to separate speech from background noise. -Train an acoustic model using a medical speech corpus.	Speech Recognition for Medical Transcriptions: Convert spoken medical notes into structured text for patient records.

	turn a substitut	Tabaanstalla]
	transcription.	-Integrate language models to enhance	
		transcription	
Croate	Imploment	accuracy. -Define speech	Personalized Voice
Create voice- enabled	Implement	I	
	speaker	recognition and its	
systems that		real-world	Elderly: Assist
offer tailored	adaptation	applications.	elderly users with
assistance to	techniques.	-Integrate speech	_
elderly users,	-	recognition into real-world	commands.
helping with tasks like	time, personalized	applications, such	
	voice assistants	as a voice assistant.	
setting reminders and	for elderly users.	-Explain the process	
controlling	TOT Elucity users.	of speaker	
home devices.		adaptation in	
nome devices.		speech recognition.	
Allow drivers to	Understand the	-Describe the	Voice-enabled
control	integration of	components of a	Navigation Systems
navigation and		speech recognition	for Vehicles: Control
GPS systems	recognition with	system, including	navigation and GPS
using voice	GPS systems.	acoustic models,	systems using voice
commands,	Apply signal	language models,	commands while
providing	processing	and decoders.	driving.
hands-free	techniques for	-Demonstrate the	Voice-controlled
functionality	feature	extraction of	Appliances: Use
while driving.	extraction and	features like Mel-	speech recognition
	noise reduction.	frequency cepstral	to control household
	Implement a	coefficients (MFCCs)	appliances like
	real-time speech-	from speech	smart TVs, ovens,
	to-text system	signals.	or air conditioners.
	for voice-	-Implement a real-	
	controlled	time speech-to-text	
	navigation.	system using	
		popular libraries like	
		Google Speech API	
		or CMU Sphinx.	
Develop	Understand the	-Discuss the use of	Multilingual Speech
systems that	5	deep learning-based	Recognition System:
can recognize	recognizing and	models in modern	Recognize and
and transcribe	transcribing	speech recognition.	transcribe speech in
speech in	speech across	-Use data	multiple languages.
multiple	different	augmentation	Real-time Speech-
languages,	languages and accents.	techniques to train models that can	to-Speech Translators:
providing greater	Apply data	models that can handle different	Facilitate seamless
accessibility	augmentation	accents.	communication
and ease of	-	-Optimize speech	between people who
communication	train models for	recognition systems	speak different
in global		for multilingual	languages.
contexts.	speech	applications.	languageoi
	recognition.		
1		L	

	1		
Create systems	Evaluate system performance on multilingual datasets.	Apply tooksioner	
Create systems that enable searching within audio or video content by transcribing speech into text, making it easier to find relevant information within large audio files.	Implement and evaluate search and indexing algorithms for audio or video content.	-Apply techniques such as noise reduction and speech enhancement on raw audio signals. -Implement and train a basic language model using a text corpus. -Evaluate the performance of a speech recognition algorithm on a test dataset.	AudioContentSearchandIndexing:Enablesearchingwithinaudioorvideocontentbytranscribingtranscribingspeechintotextforbetterindexing.Speech-basedSearchEngines:Implementvoicesearchfunctionalityinsearchengines.
Use voice recognition to input data into databases or applications without manual typing, improving efficiency in tasks such as inventory management or CRM updates.	Evaluate the accuracy and speed of speech recognition in practical data	-Implement a basic speech-to-text system using a machine learning algorithm. -Implement a real- time speech-to-text system using popular libraries like Google Speech API.	Entry Systems: Automate data entry in applications like inventory management or
Integrate voice commands into games to enhance user interaction, providing a more immersive gaming experience where players can control in- game actions using their voice	Apply speech recognition techniques for real-time voice commands in gaming applications. Integrate voice control into gaming interfaces.	-Define speech recognition and its real-world applications, including in gaming. -Integrate speech recognition into real-world applications like video games.	Voice Commands for Gaming: Enhance user interaction in games with voice commands. Voice-based Notes and Memo Systems: Use voice recognition for dictating and organizing notes.
Allow users to dictate and organize notes	Implement a speech recognition	-Demonstrate the extraction of features like Mel-	Voice-based Notes and Memo Systems: Allow users to

or memos using speech recognition, making it easier to capture ideas and to-do lists without needing to type.	system for dictating and organizing notes. Evaluate the effectiveness and accuracy of the system in real- world applications.	frequency cepstral coefficients (MFCCs) from speech signals. -Compare traditional speech recognition algorithms with modern approaches. -Implement a real- time speech-to-text system for dictating notes or memos.	dictate and organize their notes. Voice-controlled Appliances: Control household appliances using voice commands.
Implement voice search functionality in search engines, allowing users to search the web hands-free by speaking their queries.	Develop a voice- based search engine. Evaluate the accuracy and efficiency of speech-to-text search systems.	-Describe the components of a speech recognition system, including language models and decoders. -Implement a basic speech-to-text system using a machine learning algorithm. -Implement a real- time speech-to-text system for web- based searches.	Speech-based Search Engines: Enable users to search the web by speaking their queries. Voice-enabled Navigation Systems for Vehicles: Control GPS and navigation via voice commands.
Use speech recognition to control various household appliances such as smart TVs, ovens, or air conditioners, making it easier to operate devices without manual intervention.	Implement a voice recognition system to control household appliances. Evaluate the accuracy and responsiveness of voice- controlled appliances.	-Define speech recognition and its real-world applications, such as controlling appliances. -Implement a speech-to-text system for voice- controlled appliance interactions. -Integrate speech recognition into real-world applications like home automation.	Voice-controlled Appliances: Control smart devices such as TVs, ovens, or air conditioners using voice commands. Voice-enabled Navigation Systems for Vehicles: Voice- control for GPS systems.
Convert spoken language in real-time into another language using both speech recognition and	Understand the integration of speech recognition and synthesis for real-time translation.	-Integrate the language model with an acoustic model to improve transcription accuracy. -Train deep learning	Real-time Speech- to-Speech Translators: Enable seamless communication between people speaking different

synthesis, facilitating seamless communication between people who speak different languages.	Evaluate the performance of real-time translation systems.	models for real-time speech recognition and translation. -Integrate speech recognition into real-world applications like translation systems.	languages. Multilingual Speech Recognition System: Transcribe and translate speech in multiple languages.
Create systems that provide spoken-to-text conversion for individuals with hearing impairments, helping them follow conversations or presentations in real time.	Implement a real-time speech- to-text system for accessibility applications. Evaluate system performance for accessibility in live environments.	-Implement methods for voice activity detection (VAD) to separate speech from background noise. - Implement a real- time speech-to-text system using popular libraries. -Build and deploy a real-time or batch speech recognition system for accessibility.	Speech Recognition for Accessibility (e.g., for the Hearing Impaired): Convert spoken language to text for people with hearing impairments. Real-time Subtitling for Live Events: Provide real-time transcription of speech during live events for accessibility.

	LIST OF FINAL PROJECTS				
SL.NO FINAL PROJECT					
1	Voice Assistants (e.g., Siri, Alexa)				
2	Transcription Services for Meetings and Conferences				
3	Voice-controlled Smart Homes				
4	Voice-based Authentication (Speaker Recognition)				
5	Real-time Subtitling for Live Events				
6	Language Translation via Speech				
7	Voice-to-Text for Hands-Free Writing:				
8	Virtual Customer Support Systems				
9	Speech Recognition for Medical Transcriptions				
10	Personalized Voice Assistants for Elderly				
11	Voice-enabled Navigation Systems for Vehicles:				
12	Multilingual Speech Recognition System:				
13	Audio Content Search and Indexing				

14	Speech-based Data Entry Systems			
15	Voice Commands for Gaming			
16	Voice-based Notes and Memo Systems			
17	Speech-based Search Engines			
18	Voice-controlled Appliances:			
19	Real-time Speech-to-Speech Translators			
20	0 Speech Recognition for Accessibility (e.g., for the Hearing Impaired)			

ANNEXURE 3 – COURSE ASSESSMENT

ASSESSMEN T CRITERIA	DESCRIBE THE CRITERIA OF THE BELOW CATEGORY PERFORMANCE			TOTAL MARKS
	FAIR	GOOD	EXCELLENT	
MCQ/ Programming /Project Submission Round	Above 40	Above 55	Above 65	70

Category	Assessment Criteria	Performance Levels	Weightage (Marks)
Practical Skills Proficiency	Demonstrates ability to perform job-specific tasks effectively, using relevant tools, techniques, or methodologies (e.g., Tally for accounting, consignment tracking).	Fair, Good, Excellent	20
Technical Knowledge Application	Applies theoretical concepts to practical scenarios with accuracy and relevance (e.g., compliance with GST laws, financial planning, or logistics protocols).	Fair, Good, Excellent	15
Project Execution	Completes assigned projects or use cases demonstrating innovation, thoroughness, and skill application relevant to industry standards.	Fair, Good, Excellent	25
Communication and Reporting	Clearly presents findings, solutions, or project outcomes using professional communication and documentation standards (e.g., reports, presentations).	Fair, Good, Excellent	10