

Neural Networks and Deep Learning

Course

Learning

Objectives

• Understand the basics in deep neural networks

• Comprehend the basics of associative memory and

unsupervised learning networks

• Apply CNN architectures of deep neural networks

• Analyse the key computations underlying deep learning, then

use them to build and train deep neural networks for various

tasks.

• Apply autoencoders and generative models for suitable

applications.

Course

Outcomes

• Hands on expertise on the fundamental concepts of deep

neural networks: This includes the basic building blocks like

artificial neurons, activation functions, and different network

architectures.

• Implement the principles of associative memory and

unsupervised learning: Analyze how these networks function

for tasks like information retrieval and pattern recognition

without labels.

• Apply convolutional neural networks (CNNs) for various tasks:

This involves understanding the specific architecture of CNNs

and how they're used for image recognition, classification, and

other vision-related applications.

• Analyze and implement key deep learning computations: You'll

gain insights into backpropagation and gradient descent

algorithms, and be able to leverage them to build and train

deep neural networks for various tasks.

 • Deploy auto encoders and generative models for suitable

applications: This outcome focuses on understanding how

autoencoders can compress data representations, and how

generative models can create new data that resembles the

training data.

Unit I: Introduction to Neural Networks

1. Stock Price Prediction: Using supervised learning networks to predict stock

market trends.

2. Handwriting Recognition: Implement an ANN to recognize and interpret

handwritten text or numbers.

3. Basic Image Classification: Create a simple image classifier using basic models

of ANN.

4. Language Translation Tool: Develop a basic tool for translating one language

to another using ANNs.

Unit II: Associative Memory and Unsupervised Learning Networks

1. Pattern Recognition System: Utilize training algorithms for pattern association

in images or signals.

2. Memory Network for Historical Data: Implement a Heter associative memory

network for recalling historical data.

3. Self-Organizing Map for Data Visualization: Use Kohonen Maps to visualize

high- dimensional data.

4. Customer Segmentation Tool: Apply learning vector quantization for market

segmentation analysis.

Unit III: Third-Generation Neural Networks

1. Advanced Image Classification: Use convolutional neural networks (CNNs) for

more complex image classification tasks.

2. Facial Recognition System: Implement a deep learning neural network for

facial recognition.

3. Image Compression Tool: Develop a system using CNNs for efficient image

compression.

4. Speech Recognition System: Create a speech recognition tool using spiking

neural networks.

Unit IV: Deep Feedforward Networks

1. Sentiment Analysis from Text: Implement a deep learning model to analyze

and predict sentiment from text data.

2. Automated Essay Scoring System: Use gradient learning and backpropagation

to score essays.

3. Predictive Text Generation: Develop a system that generates predictive text

using deep feedforward networks.

4. Medical Diagnosis Assistant: Create a tool to assist in medical diagnosis using

deep learning techniques.

Unit V: Recurrent Neural Networks

1. Time Series Forecasting: Use RNNs for forecasting weather, stock prices, or

other time-series data.

2. Music Generation: Implement an RNN to generate original music compositions.

3. Chatbot for Customer Service: Develop a chatbot using deep recurrent

networks for handling customer queries.

4. Language Processing for Social Media: Create a tool to process and analyze

natural language from social media posts using RNNs and autoencoders.

Course Duration: 45 Hours

Test Projects:

Use Case 1: Stock Price Prediction Description:

This project focuses on developing a neural network-based system for predicting

stock market trends. Students will employ supervised learning techniques to analyze

historical stock price data and predict future prices. The goal is to create a model that

can provide accurate predictions based on patterns learned from past data.

Tasks:

1. Data Collection and Preprocessing: Gather historical stock price data from

reliable sources. Preprocess the data to format it suitably for neural network training.

2. Neural Network Design: Design and implement a neural network using a

programming language like Python. Utilize libraries like TensorFlow or PyTorch for

this purpose.

3. Training and Validation: Train the neural network with historical data and

validate its performance using a separate dataset.

4. Prediction and Analysis: Implement functionality for the network to make

future price predictions. Analyze the accuracy of these predictions.

5. Interface Development: Develop a user interface where users can input stock

symbols and view predicted prices.

6. Testing and Debugging: Rigorously test the system for various stock scenarios

and debug any issues in predictions or performance.

7. Documentation: Document the development process, model architecture, and

the logic behind predictions.

Learning Outcome:

1. Data Science Skills: Develop skills in handling and preprocessing large

datasets.

2. Deep Learning Techniques: Gain experience in designing and implementing

neural networks.

3. Analytical Skills: Enhance abilities in analyzing and interpreting model

predictions.

4. UI Development: Learn to create basic user interfaces for displaying

predictions.

5. Debugging and Problem Solving: Improve debugging skills and develop

problem-solving strategies.

6. Documentation and Reporting: Hone documentation skills, focusing on

technical aspects and predictive analysis.

Use Case 2: Handwriting Recognition Description:

This project involves creating a neural network to recognize and interpret handwritten

text or numbers. The system will be trained to identify different handwriting styles

and convert them into digital text. The focus will be on developing a robust model

that can accurately interpret varied handwriting patterns.

Tasks:

1. Dataset Collection and Preprocessing: Collect datasets of handwritten texts or

digits. Preprocess these images for neural network training.

2. Neural Network Implementation: Implement an artificial neural network (ANN)

using a suitable framework such as TensorFlow.

3. Training and Validation: Train the network with the dataset and validate its

performance using a separate validation set.

4. Handwriting Interpretation: Enable the system to interpret and convert

handwritten inputs into digital text.

5. Interface Development: Create an interface where users can upload images of

handwriting and receive digital text outputs.

6. Testing and Evaluation: Test the system extensively with different handwriting

styles and evaluate its accuracy.

7. Documentation: Document the entire process, including data preprocessing,

network design, and interpretation logic.

Learning Outcome:

1. Image Processing Skills: Acquire skills in processing and interpreting image

data.

2. ANN Design and Implementation: Gain experience in designing and

implementing artificial neural networks.

3. Pattern Recognition: Understand the principles of pattern recognition in varied

data.

4. UI/UX Development: Learn to develop user-friendly interfaces for interactive

applications.

5. Accuracy Assessment: Develop skills in evaluating and improving model

accuracy.

6. Technical Documentation: Enhance ability to document complex processes and

model structures.

Use Case 3: Basic Image Classification Description:

This project aims to create a simple image classifier using basic models of artificial

neural networks (ANN). The classifier will be trained to categorize images into

predefined classes based on their features. This project will serve as an introduction

to image classification and neural network training.

Tasks:

1. Dataset Gathering and Preparation: Collect a dataset of images categorized

into different classes. Prepare the dataset for ANN training.

2. ANN Model Development: Develop a basic ANN model suitable for image

classification.

3. Model Training and Testing: Train the model with the dataset and test its

classification accuracy.

4. Feature Analysis: Analyze how the model categorizes different features of

images.

5. Interface for Classification: Build a simple interface where users can upload

images and see the classification results.

6. Performance Evaluation: Evaluate the model's performance and refine it for

better accuracy.

7. Documentation: Thoroughly document the development process, model

architecture, and classification logic.

Learning Outcome:

1. Fundamentals of Image Classification: Learn the basics of image classification

using neural networks.

2. ANN Modeling Skills: Develop skills in creating and training artificial neural

networks.

3. Data Analysis and Interpretation: Enhance abilities in analyzing image data

and interpreting classification results.

4. User Interface Design: Gain experience in developing interfaces for interacting

with neural network models.

5. Model Optimization: Learn techniques for optimizing neural network

performance.

6. Technical Writing: Improve skills in documenting complex technical processes.

Use Case 4: Language Translation Tool Description

In this project, students will develop a basic tool for translating one language to

another using artificial neural networks (ANNs). The focus will be on creating a model

that can understand the context and semantics of one language and accurately

translate it into another.

Tasks:

1. Dataset Collection: Gather bilingual datasets that contain pairs of sentences in

two languages.

2. Neural Network Setup: Implement a neural network capable of language

translation.

3. Model Training: Train the network with the bilingual dataset to learn language

translation.

4. Translation Functionality: Develop functionality for translating sentences from

one language to another.

5. Interface Creation: Build an interface where users can input sentences in one

language and receive translations in another.

6. Accuracy Testing: Test the translation accuracy for various sentences and

refine the model as needed.

7. Documentation: Document the entire development process, focusing on the

network's ability to understand and translate languages.

Learning Outcome:

1. Natural Language Processing: Understand the basics of natural language

processing with neural networks.

2. Language Translation Mechanisms: Gain insights into how language translation

can be implemented using ANNs.

3. Data Handling and Preprocessing: Learn to manage and preprocess linguistic

data for neural network training.

4. User Interface Development: Acquire skills in creating interfaces for language-

based applications.

5. Model Accuracy and Refinement: Develop abilities in refining models for better

accuracy in language translation.

6. Technical Documentation: Enhance documentation skills, particularly in

explaining complex language processing concepts.

Use Case 5: Pattern Recognition System Description:

This project focuses on developing a Pattern Recognition System using associative

memory and unsupervised learning networks. The system will be capable of

identifying and classifying patterns within datasets, such as images or signals. It will

utilize advanced training algorithms for pattern association, enabling it to recognize

complex patterns and categorize them accurately.

Tasks:

1. Data Collection and Preprocessing: Gather diverse datasets containing various

patterns. Preprocess the data to normalize and clean it, making it suitable for the

training process.

2. Neural Network Design: Design an associative memory network, selecting

appropriate neural network architectures for pattern recognition tasks.

3. Training Algorithm Implementation: Implement training algorithms suitable for

associative memory, ensuring the network learns to recognize and associate patterns

effectively.

4. Pattern Recognition Testing: Test the system with new, unseen data to

evaluate its pattern recognition capabilities. Analyze its performance in terms of

accuracy and efficiency.

5. User Interface Development: Develop a user interface that allows users to

input data and view the recognized patterns and their classifications.

6. System Optimization: Optimize the system for better performance, including

faster processing times and higher accuracy in pattern recognition.

Learning Outcome:

Through this project, you will gain experience and understanding in the following

areas:

1. Data Collection and Preprocessing: Skills in gathering and preprocessing data

to prepare it for neural network training.

2. Neural Network Design: Knowledge in designing associative memory networks

suitable for pattern recognition tasks.

3. Training Algorithm Implementation: Experience in implementing and tuning

training algorithms for associative memory networks.

4. Pattern Recognition Testing: Ability to test and evaluate the pattern

recognition capabilities of the system.

5. User Interface Development: Skills in creating user interfaces for interacting

with neural network systems.

6. System Optimization: Techniques in optimizing neural network systems for

improved performance.

Use Case 6: Memory Network for Historical Data Description:

This project entails creating a memory network designed to recall and analyze

historical data. Students will use neural network architectures to process and retrieve

historical information from large datasets. The focus will be on implementing a hetero

associative memory network capable of associating different types of data and

recalling them efficiently.

Tasks:

1. Data Collection and Preprocessing: Gather historical datasets and preprocess

them for neural network training.

2. Memory Network Implementation: Implement a hetero associative memory

network using neural network frameworks like TensorFlow or PyTorch.

3. Data Association and Retrieval Logic: Develop the logic for data association

and retrieval within the network.

4. Performance Optimization: Optimize the network for accurate and fast data

retrieval.

5. Testing and Validation: Test the network with unseen data to validate its recall

abilities.

6. Documentation: Document the development process, including the

architecture of the memory network and the rationale behind design choices.

Learning Outcome:

1. Neural Network Architecture: Understand the architecture and functioning of

hetero associative memory networks.

2. Data Preprocessing: Learn efficient data preprocessing techniques for neural

networks.

3. Problem-Solving Skills: Develop problem-solving skills in data association and

retrieval using neural networks.

4. Performance Optimization: Gain experience in optimizing neural networks for

better performance.

5. Testing and Validation Techniques: Learn how to test and validate neural

network models.

6. Documentation Skills: Improve documentation skills, essential for explaining

complex technical systems.

Use Case 7: Self-Organizing Map for Data Visualization Description:

This project focuses on using Kohonen Self-Organizing Maps (SOMs) to visualize high-

dimensional data. The project aims to provide a clear understanding of how SOMs

can be used to simplify and visualize complex data patterns in a comprehensible two-

dimensional space.

Tasks:

1. Understanding Kohonen Maps: Learn the theory and principles behind Kohonen

Self-Organizing Maps.

2. Data Preparation: Select and preprocess data suitable for SOM-based

visualization.

3. Map Implementation: Implement a self-organizing map using a neural network

library.

4. Data Mapping and Visualization: Map high-dimensional data onto the SOM and

develop visualization tools to interpret the results.

5. Analysis and Interpretation: Analyze the SOM results to draw meaningful

insights from the data.

6. Documentation: Document the process, explaining the SOM implementation

and the insights derived from the data visualization.

Learning Outcome:

1. Theoretical Knowledge: Gain a strong understanding of the principles behind

self-organizing maps.

2. Data Handling: Learn how to prepare and process data for neural network

training and visualization.

3. Visualization Skills: Develop skills in visualizing complex data patterns.

4. Analytical Thinking: Enhance analytical thinking in interpreting neural network

outputs.

5. Technical Writing: Improve technical writing skills by documenting the process

and findings.

6. Problem-solving Skills: Develop problem-solving skills in applying SOMs to

real-world data.

Use Case 8: Customer Segmentation Tool Description:

This project involves the development of a customer segmentation tool using

Learning Vector Quantization (LVQ). Students will learn how to apply LVQ algorithms

to categorize customers into distinct segments based on purchasing behavior,

demographics, or other relevant factors.

Tasks:

1. Theory of LVQ: Study the principles and algorithms behind Learning Vector

Quantization.

2. Data Collection and Preprocessing: Gather and preprocess customer data for

segmentation.

3. LVQ Model Implementation: Implement an LVQ model using appropriate neural

network frameworks.

4. Segmentation and Analysis: Use the model to segment customers and analyze

the segmentation results.

5. Interface Design: Create a user-friendly interface to interact with the model

and display segmentation results.

6. Documentation: Document the development process, including the logic

behind customer segmentation and model implementation.

Learning Outcome:

1. LVQ Algorithms: Understand and apply Learning Vector Quantization

algorithms.

2. Data Preprocessing Skills: Gain experience in data collection and preprocessing

for neural networks.

3. Segmentation Techniques: Learn customer segmentation techniques and their

applications.

4. User Interface Design: Develop skills in designing user interfaces for displaying

complex data.

5. Analytical Skills: Improve analytical skills in interpreting and applying

segmentation results.

6. Technical Documentation: Enhance abilities in documenting technical

processes and outcomes.

Use Case 9: Advanced Image Classification System Description:

This project focuses on building an advanced image classification system using

Convolutional Neural Networks (CNNs). Students will learn to apply deep learning

techniques to classify images into various categories based on their content. The

project will involve handling a large dataset of images, preprocessing them, and using

CNNs to accurately categorize each image.

Tasks:

1. Data Preprocessing: Learn to preprocess image data, including resizing,

normalization, and data augmentation, to prepare it for training a CNN model.

2. CNN Model Building: Construct a CNN model using deep learning frameworks

like TensorFlow or PyTorch. This involves designing the architecture with

convolutional layers, activation functions, and pooling layers.

3. Training and Validation: Train the model on a dataset, implementing

techniques like batch training and dropout to improve model performance. Validate

the model using a separate dataset to evaluate its accuracy.

4. Hyperparameter Tuning: Experiment with different hyperparameters, such as

learning rate and number of epochs, to optimize the model's performance.

5. User Interface: Create a simple user interface where users can upload images

and receive classification results from the trained model.

6. Testing and Debugging: Test the system with a wide variety of images to

ensure robustness and accuracy. Debug any issues that arise during testing.

7. Documentation: Document the entire process, including model architecture,

training process, and choices made during development.

Learning Outcome:

1. Deep Learning Techniques: Gain practical experience in deep learning,

specifically in building and training CNNs for image classification.

2. Data Handling and Preprocessing: Learn the importance of preprocessing in

image data handling and how it affects model training.

3. Model Optimization: Understand how to tune hyperparameters and use

regularization techniques to improve model performance.

4. User Interface Design: Develop basic skills in creating user interfaces for

interacting with deep learning models.

5. Problem-solving and Debugging: Enhance debugging and problem-solving

skills in a complex AI project.

6. Technical Documentation: Improve abilities in documenting complex technical

processes and model architectures.

Use Case 10: Facial Recognition System Description:

This project entails developing a facial recognition system using deep learning neural

networks. Students will explore the intricacies of facial recognition technology,

focusing on detecting and identifying faces in images or videos. The system will be

trained to recognize and distinguish between different individuals' faces accurately.

Tasks:

1. Face Detection: Implement face detection algorithms to locate faces within

images or video streams.

2. Feature Extraction: Use neural networks to extract distinct features from faces,

such as the distance between eyes, nose shape, and jawline.

3. Model Training: Train a deep learning model, possibly using pre-trained models

like VGGFace or FaceNet, to recognize and differentiate between faces.

4. Database Management: Create a database to store facial data and

corresponding identifiers for recognition purposes.

5. Integration and Testing: Integrate the face recognition model with a user

interface or a simulation environment. Conduct extensive testing to ensure accuracy

and efficiency.

6. Ethical Considerations: Address ethical considerations and privacy concerns

related to facial recognition technologies.

7. Documentation: Document the design, development process, and ethical

considerations of the facial recognition system.

Learning Outcome:

1. Deep Learning Application: Understand the application of deep learning in

facial recognition and the challenges involved.

2. Feature Extraction and Analysis: Learn about facial feature extraction and how

neural networks can be used for this purpose.

3. Ethical and Privacy Aspects: Gain awareness of the ethical and privacy

implications of facial recognition technology.

4. Database Management Skills: Develop skills in managing and utilizing

databases in AI projects.

5. Integration and Testing Abilities: Enhance abilities in integrating AI models

with applications and conducting comprehensive testing.

6. Technical Documentation: Improve documentation skills, especially in terms of

explaining complex AI models and ethical considerations.

Use Case 11: Image Compression Tool Description:

This project involves creating a system using Convolutional Neural Networks (CNNs)

for efficient image compression. The aim is to develop a tool that can compress

images without significant loss of quality, optimizing storage and transmission

requirements. Students will explore the balance between compression rate and image

fidelity.

Tasks:

1. Understanding Image Compression: Learn about different image compression

techniques and the fundamentals behind them.

2. CNN Model Design: Design a CNN model specifically for the task of image

compression. This involves understanding and implementing autoencoder

architectures.

3. Training and Optimization: Train the model on a large dataset of images and

optimize it for the highest compression ratio with minimal quality loss.

4. Evaluation Metrics: Implement evaluation metrics to assess the quality of

compressed I mages, such as Peak Signal-to-Noise Ratio (PSNR) and Structural

Similarity Index (SSIM).

5. User Interface: Develop an interface where users can upload images, compress

them using

the model, and download the compressed images.

6. Testing and Debugging: Test the system with various types of images to

ensure consistent performance. Debug any issues that arise.

7. Documentation: Document the model architecture, training process, and the

rationale behind chosen methodologies.

Learning Outcome:

1. Image Processing Techniques: Gain knowledge in image processing and

compression techniques.

2. CNN Architectures: Understand how to design and implement CNN

architectures, specifically autoencoders, for specific tasks.

3. Performance Metrics: Learn about various metrics to evaluate image quality

and compression efficiency.

4. User Interface Development: Acquire skills in developing interfaces for AI-

based applications.

5. Analytical and Debugging Skills: Develop analytical skills and debugging

techniques in a complex AI project.

6. Technical Documentation: Enhance the ability to document technical processes

and decision-making in AI projects.

Use Case 12: Speech Recognition System Description:

The goal of this project is to create a speech recognition tool using spiking neural

networks. Students will develop a system capable of converting spoken language into

text. The project will explore the challenges of processing and understanding human

speech, including variations in accent, speech rate, and background noise.

Tasks:

1. Audio Preprocessing: Learn to preprocess audio data, such as noise reduction

and normalization, to prepare it for neural network training.

2. Spiking Neural Network Implementation: Implement a spiking neural network,

understanding its advantages in temporal data processing like speech.

3. Training the Model: Train the model with a diverse dataset containing different

accents, speech rates, and noises to ensure robustness.

4. Speech-to-Text Conversion: Develop algorithms to convert the neural

network's output into readable text accurately.

5. Testing and Optimization: Test the system in different audio environments and

optimize it for better accuracy and efficiency.

6. User Interface: Create a user interface for real-time speech to text conversion.

7. Documentation: Document the development process, including the challenges

faced and how they were overcome.

Learning Outcome:

1. Audio Processing and Analysis: Understand the complexities of audio

processing and speech analysis.

2. Neural Network Design: Learn about spiking neural networks and their

application in temporal data processing.

3. Model Training and Optimization: Gain skills in training and optimizing neural

networks for specific tasks like speech recognition.

4. Real-time Application Development: Develop the ability to create real-time

applications, integrating AI models with user interfaces.

5. Problem-solving and Debugging: Enhance problem-solving and debugging

skills in dealing with real-world data and environments.

6. Technical Documentation: Improve abilities in documenting complex AI

projects and explaining technical details.

Use Case 13: Sentiment Analysis from Text Description:

This project focuses on developing a deep learning model for sentiment analysis from

text data. Students will create a model that can analyze and predict the sentiment

(positive, negative, neutral) expressed in textual content, such as social media posts,

reviews, or articles.

Tasks:

1. Understanding Sentiment Analysis: Learn the basics of sentiment analysis and

its applications.

2. Data Collection and Processing: Collect and preprocess text data for training

the model.

3. Model Development: Develop a deep learning model for sentiment analysis

using frameworks like TensorFlow or PyTorch.

4. Model Training and Testing: Train the model on a dataset and test its accuracy

in predicting sentiment.

5. Interface Development: Build an interface for inputting text and displaying

sentiment analysis results.

6. Documentation: Document the model development process, including the

choice of architecture, data processing, and testing outcomes.

Learning Outcome:

1. Deep Learning Techniques: Gain hands-on experience in developing deep

learning models.

2. Text Processing Skills: Learn advanced techniques for processing and

analyzing text data.

3. Model Training and Evaluation: Understand how to train and evaluate deep

learning models.

4. User Interface Design: Develop skills in creating interfaces for AI applications.

5. Problem-solving Skills: Enhance problem-solving skills in applying AI to natural

language processing tasks.

6. Technical Documentation: Improve documentation skills, focusing on technical

aspects of AI development.

Use Case 14: Automated Essay Scoring System Description:

This project aims to create an automated essay scoring system using deep

feedforward networks. The system will be trained to evaluate and score essays based

on various parameters like coherence, grammar, and relevance to the topic.

Tasks:

1. Understanding Essay Scoring: Study the criteria used in traditional essay

scoring.

2. Data Collection and Processing: Collect a dataset of essays and corresponding

scores for training.

3. Neural Network Development: Develop a deep feedforward neural network for

scoring essays.

4. Feature Extraction and Scoring Logic: Implement logic for extracting relevant

features from essays and assigning scores.

5. Testing and Refinement: Test the system's accuracy and refine the model for

better performance.

6. Documentation: Document the development process, including the neural

network design and scoring algorithm.

Learning Outcome:

1. Deep Learning Fundamentals: Gain deeper insights into the workings of deep

feedforward networks.

2. Text Analysis: Learn techniques for analyzing and processing textual data.

3. Scoring Algorithms: Understand how to develop and implement scoring

algorithms.

4. Accuracy Improvement: Learn methods to improve the accuracy of neural

network predictions.

5. Problem-solving Skills: Develop skills in applying AI for educational purposes.

6. Technical Documentation: Improve abilities to document complex AI

systems and algorithms.

Use Case 15: Predictive Text Generation Description:

This project entails creating a Predictive Text Generation system using deep

feedforward networks. The system will be designed to generate predictive text based

on input data, mimicking human-like text generation. It will utilize deep learning

techniques to learn from large datasets of text and predict the next words or

sentences in a sequence.

Tasks:

1. Dataset Collection and Preparation: Collect large datasets of textual data and

prepare them for training, including cleaning and formatting the text.

2. Neural Network Modeling: Design and implement a deep feedforward network

suitable for text prediction tasks.

3. Training and Fine-tuning: Train the model on the prepared datasets, fine-

tuning it to improve its text prediction capabilities.

4. Text Generation Testing: Test the model's ability to generate predictive text.

Evaluate its performance in terms of coherence, relevance, and human-like quality.

5. Interface Development for Input/Output: Create a user-friendly interface that

allows users to input text and receive predictive text suggestions.

6. Model Optimization: Optimize the model for efficiency, ensuring fast

and accurate text generation.

Learning Outcome:

Through this project, you will gain experience and understanding in the following

areas:

1. Dataset Collection and Preparation: Skills in collecting and preparing large text

datasets for neural network training.

2. Neural Network Modeling: Knowledge in designing and implementing deep

feedforward networks for text generation tasks.

3. Training and Fine-tuning: Experience in training and fine-tuning neural

networks to enhance their predictive capabilities.

4. Text Generation Testing: Ability to test and evaluate the text generation

capabilities of the model.

5. Interface Development for Input/Output: Skills in creating interfaces for

interactive text generation systems.

6. Model Optimization: Techniques in optimizing neural network models for better

performance and efficiency.

Use Case 16: Medical Diagnosis Assistant Description:

This project focuses on creating a tool to assist in medical diagnosis using deep

learning techniques. Students will develop a system that can analyze medical data,

such as images or patient history, to aid in diagnosing diseases or conditions.

Tasks:

1. Data Collection: Gather medical datasets, such as imaging or patient records.

2. Data Preprocessing: Preprocess the data for use in deep learning models.

3. Deep Learning Model: Build and configure a deep learning model suitable for

medical diagnosis.

4. Training and Evaluation: Train the model on the dataset and evaluate its

diagnostic accuracy.

5. Diagnostic Tool Development: Develop a tool that uses the model to assist in

medical diagnosis.

6. Ethical Considerations: Address ethical considerations in AI applications in

healthcare.

7. Documentation: Document the entire development process, including data

handling, model building, and ethical considerations.

Learning Outcome:

1. Medical Data Handling: Understand the complexities of handling sensitive

medical data.

2. Deep Learning in Healthcare: Gain insights into the application of deep learning

in healthcare.

3. Diagnostic Accuracy: Learn about the challenges and solutions in improving

diagnostic accuracy with AI.

4. Ethical AI Use: Develop an understanding of ethical considerations in AI,

especially in healthcare.

5. Comprehensive Documentation: Enhance skills in documenting complex AI

projects in sensitive areas like healthcare.

Use Case 17: Time Series Forecasting Description:

This project focuses on building a time series forecasting model using Recurrent

Neural Networks (RNNs). Students will develop a system that can predict future

values in a time series, such as stock prices or weather patterns, based on historical

data. The project will emphasize understanding RNN architectures, particularly their

application in handling sequential data.

Tasks:

1. Data Preprocessing: Clean and preprocess the time series data for training the

RNN.

2. Model Building: Construct and configure an RNN model suitable for time series

forecasting.

3. Training and Validation: Train the model on historical data and validate its

performance.

4. Prediction: Implement the model to make future predictions based on the input

data.

5. Visualization: Create visualizations to display the predicted results compared

to actual data.

6. Documentation: Document the entire process, including data preprocessing,

model architecture, and prediction results.

Learning Outcome:

1. Sequential Data Processing: Gain expertise in handling and processing time

series data.

2. RNN Architectures: Understand the architecture and functionality of Recurrent

Neural Networks.

3. Model Optimization: Learn techniques for optimizing neural network

performance.

4. Data Visualization: Develop skills in visualizing complex data and model

predictions.

5. Technical Documentation: Enhance documentation skills, focusing on technical

processes and outcomes.

Use Case 18: Music Generation Description:

In this project, students will develop a system that generates original music

compositions using Recurrent Neural Networks (RNNs). The project aims to explore

the creative potential of AI in the arts, focusing on understanding how neural

networks can learn and reproduce musical patterns.

Tasks:

1. Data Gathering: Collect a dataset of musical scores or audio files for training

the model.

2. Data Processing: Convert the musical data into a format suitable for training

the RNN.

3. Model Development: Design and build an RNN model capable of generating

music.

4. Training and Tuning: Train the model on the dataset and fine-tune it for better

performance.

5. Music Generation: Use the trained model to generate new music compositions.

6. Evaluation: Assess the quality and originality of the generated music.

7. Documentation: Document the methodology, model architecture, and

evaluation process.

Learning Outcome:

1. Creative AI Applications: Explore the use of AI in creative fields like music.

2. Data Handling in Arts: Learn to process and handle artistic data, such as

musical compositions.

3. Neural Network Training: Gain insights into training neural networks for non-

traditional applications.

4. Artistic Evaluation: Develop criteria for evaluating AI-generated art.

5. Comprehensive Documentation: Enhance skills in documenting AI projects,

especially those involving creative outputs.

Use Case 19: Chatbot for Customer Service Description:

This project entails building a chatbot using deep recurrent networks for handling

customer service queries. The goal is to create a bot that can understand and respond

to customer inquiries, providing helpful and accurate information.

Tasks:

1. Data Collection: Gather a dataset of common customer service interactions.

2. Data Preprocessing: Process the data for use in training the neural network.

3. RNN Model Building: Develop a recurrent neural network model for natural

language processing.

4. Training and Validation: Train the model on customer service data and validate

its accuracy.

5. Interface Development: Create a user-friendly interface for customers to

interact with the chatbot.

6. Testing: Conduct extensive testing to ensure the chatbot's reliability and

accuracy.

7. Documentation: Document the development process, including challenges and

solutions.

Learning Outcome:

1. Natural Language Processing: Understand and apply techniques in natural

language processing.

2. Customer Interaction: Gain insights into automating customer service

interactions.

3. UI/UX Design: Learn the basics of user interface and user experience design.

4. Problem-Solving: Enhance problem-solving skills, especially in AI application

contexts.

5. Technical Writing: Improve technical writing and documentation skills.

Use Case 20: Language Processing for Social Media Description:

This project involves creating a tool to process and analyze natural language from

social media posts using Recurrent Neural Networks (RNNs) and autoencoders. The

objective is to develop a system that can understand the context, sentiment, and

trends in social media language.

Tasks:

1. Data Acquisition: Collect a dataset of social media posts for analysis.

2. Text Processing: Preprocess and clean the text data for neural network

training.

3. Model Development: Build a neural network model combining RNNs and

autoencoders.

4. Training and Testing: Train the model on the dataset and evaluate its

performance.

5. Analysis Tool: Develop a tool for sentiment analysis, trend detection, and context

understanding.

6. Reporting: Create a system for generating reports based on the analysis.

7. Documentation: Thoroughly document the process and methodologies used.

Learning Outcome:

1. Social Media Analytics: Learn techniques for analyzing social media content.

2. Advanced NLP: Gain deep insights into advanced natural language processing

techniques.

3. Data Visualization and Reporting: Develop skills in data visualization and

reporting.

4. AI Model Integration: Understand how to integrate different AI models for

complex tasks.

5. Documentation and Reporting: Improve skills in documenting and reporting

technical processes.

Student Assessment Plan:

Each of the above-mentioned test projects will be divided into tasks by the

training partner for each specific institution. Such tasks will be jointly evaluated by

the faculty and the training partner and the following weightage is to be followed.

● 70% weightage to the external practical assessment.

● 30% weightage to the internal assessment.

Final Test Project/External Assessment Plan:

The Final Test Project will be chosen from the list given above, jointly by the

college faculty and the Training Partner. The Final Test Project will be assessed on

the following tasks, for 70 marks:

Details Marks

Task: 1 20

Task: 2 20

Task: 3 20

Task: 4 20

Task: 5 20

Employment Potential:

This course shall enable Computer Science Engineers to get employment in

sectors like Aerospace, Defence, Automotive industry, E-commerce and etc.

