SL.N O	MODULE NAME	MODULE CONTENT	MODULE LEARNING OUTCOME	DURATION (HRS)
	Introduction to PCB Design and Fusion	 Overview of PCB design principles and application s. Introducti on to CAD tools for PCB design (e.g., Altium, Eagle, KiCAD). Basics of schematic creation and library 	 OUTCOME ○ Understand PCB design concepts and CAD tool functionalities . ○ Gain proficiency in creating and managing schematic symbols 	10
		managem ent.	and footprints.	
2	Schematic Design and	 Schematic creation and connectivity 	 Design accurate schematics and verify electrical connectivity. 	12
	Component Selection	checks. Component selection based on 	 Select Select appropriate components for various applications. 	

Annexure I - Course Curriculum

3	PCB Layout and Routing	specifications and application. • Custom component library creation and management. • Placement of components on the board. • Routing techniques for single-layer and multi-layer PCBs. • Signal integrity considerations and design rules.	 Create optimized layouts for single and multi-layer PCBs. Perform routing that adheres to design standards. 	8
4	Design Validati on and Simulati on	 Design Rule Checks (DRC) and error resolution. Thermal and signal integrity analysis. 	 Ensure design compliance with industry standards. Validate PCB designs using simulation tools. 	8

		 Validation of high- speed and RF designs. 		
5	Manufact uring and Documen tation	 Generation of Gerber files, BOM, and assembly drawings. Preparing documentat ion for manufacturi ng and testing. Introduction to design for manufacturabilit y (DFM) and assembly (DFA). 	 Prepare complete manufactur ing documenta tion. Optimize designs for efficient production and assembly. 	7

Annexure II: Use Cases and Test Projects				
OVERALL COURSE LEARNING OUTCOME ASSESSMENT CRITERIA AND USECASES				
LEARNING OUTCOME	ASSESSMEN T CRITERIA	PERFORMA NCE CRITERIA	USECASES	
 Understand the product design lifecycle, including problem identification and solution generation. Develop and prototype simple 	Practical Skills Assessment Simulation and Design Proficiency Problem- Solving and Iteration:	 Ability to design	Sequential Timer for DC Motor Control Project Overview: Design a PCB to control a DC motor using a sequential timer. The motor will operate in a pre-defined sequence based on timer settings, such as turning on, off, or running at different speeds.	
 Protocype simple electronics projects using microcontrollers and basic components. Work with simulation tools and protocyping 	Documentati on and Reporting: Presentation and Communicati on:	actuators, and basic component s. ✓ Perfor mance in building functional prototypes on breadboard	 Skills Focused On: ✓ Power and signal routing for motor control. ✓ Designing for high-current circuits. ✓ Component placement for efficient timing and power distribution. 	
platforms like Arduino and breadboards. ✓ Utilize sensors, actuators, and interfacing		s or similar platforms (e.g., Arduino) and troublesho oting issues.	2. Motor Speed Control Project Overview: Design a PCB to control the speed of a DC motor using Pulse Width Modulation (PWM). The speed can be adjusted	
techniques in electronic designs. ✓ Fabricate, test, and iterate on		 Compe tence in using simulation tools like 	 via a potentiometer or a microcontroller. Skills Focused On: ✓ Designing PWM-based motor control circuits. 	
functional prototypes. Present projects with clear Present 		TinkerCAD, Fritzing, or KiCAD for designing circuits and testing	 PCB routing for power and control signals. Efficient placement of high- power and low-power 	

documentation	prototypes.	components.
and user-focused	prococypeer	componentes
design.	 Ability to simulate and analyze circuit behavior before physical implement ation. 	 3. Rain Alarm Circuit Project Overview: Design a PCB for a rain alarm system that detects water or moisture levels via a sensor and triggers an alarm when water is detected. Skills Focused On: ✓ Low-power PCB
	 Ability to identify problems in designs, iterate on solutions, and 	 Low power TCB design. Analog signal conditioning. Designing for compact and efficient PCB layouts.
	optimize prototypes.	4. Temperature Alarm Circuit Project Overview:
	✓ Effecti veness in testing and refining prototypes based on feedback	Design a PCB for a temperature alarm system that triggers when the temperature exceeds a threshold, using a temperature sensor like the LM35 or DHT11.
	or performanc e results.	Skills Focused On: ✓ Analog signal conditioning and
	 Quality Quality and clarity of technical documenta tion, including circuit 	 processing. ✓ Power supply design and voltage regulation. ✓ PCB layout for noise-sensitive analog circuits.
	diagrams, code, and system designs.	5. Fire Detector Alarm Project Overview: Design a PCB-based fire detection system using
	 Ability to 	a flame sensor or smoke sensor (e.g., MQ

 communica te design rationale, decisions, and modificatio ns clearly in written and visual formats. Effecti veness of live demonstrat ions and presentatio ns of completed prototypes. Ability to explain 	 series). The system will trigger an alarm when fire is detected. Skills Focused On: ✓ Safety-critical design and reliable circuit operation. ✓ Signal filtering and noise reduction. ✓ Compact and efficient PCB layout for sensor systems. 6. Water Level Indicator Project Overview: Design a PCB to indicate the water level in a tank using sensors like conductive probes or ultrasonic sensors, with visual indicators (e.g., LEDs).
prototypes.	 like conductive probes or ultrasonic sensors, with visual indicators (e.g., LEDs). Skills Focused On: ✓ Designing sensor-based measurement systems. ✓ Signal processing and conditioning. ✓ Power
	 Skills Focused On: Low-power design for battery- operated sensors.

🗸 Signal
conditioning and
analog-to-digital
conversion.
✓ Outdoor and
environmental sensor
design.
8. Automatic Street
Light
Project Overview:
Design a PCB that
automatically turns
street lights on/off
based on ambient light
levels using a light-
dependent resistor
(LDR).
Skills Focused On:
✓ Light-sensing
circuit design.
✓ Power-efficient
PCB design.
✓ Outdoor and
rugged PCB design.
9. Clap Switch
Project Overview:
Design a PCB that uses
a sound sensor to
detect a clap and switch
an electrical device
(e.g., a light) on or off.
Skills Focused On:
✓ Sound signal
processing and
filtering.
✓ Power-efficient
designs for sensor-
based applications.
✓ Designing for
low-noise
environments.
10. Door Bell Using
IC 555
Project Overview:
Design a PCB-based
doorbell circuit using

the IC 555 timer in a stable multivibrator mode to generate a tone when a button is pressed.
Skills Focused On: ✓ Working with timer ICs and simple logic circuits. ✓ Low-power
design for simple output systems. ✓ Compact and efficient PCB layout design.

LIST OF FINAL PROJECTS (20 PROJECTS THAT COMPREHENSIVELY COVER ALL THE LEARNING OUTCOME)		
SL.NO	FINAL PROJECT	
1.	 Automated Plant Watering System Project Overview: Design a PCB to control a water pump based on soil moisture levels using a moisture sensor and ESP32 microcontroller. The system automatically waters plants as needed. Skills Focused On: ✓ Power routing ✓ Signal conditioning for analog sensors ✓ Motor driver integration. 	
2.	 Motion-Activated Lighting System Project Overview: Create a PCB for an automatic lighting system using a PIR motion sensor to detect movement and control an LED light strip. Skills Focused On: ✓ Sensor interfacing ✓ LED driver circuit design ✓ Thermal management 	
3.	 Temperature-Controlled Fan Project Overview: Develop a PCB for a fan system that adjusts speed based on temperature readings from a DHT22 sensor. Skills Focused On: ✓ Temperature sensing ✓ PWM signal routing ✓ High-current circuit design 	
4.	Proximity-Based Door Lock System	

	Project Overview: Build a PCB for an automatic door lock that operates when an authorized RFID tag is detected. Skills Focused On:
	✓ RFID interfacing
	✓ Motor control
	✓ Noise suppression
	Digital Thermometer with Display
5.	Project Overview: Design a PCB for a digital thermometer that displays temperature on an OLED screen. Skills Focused On:
э.	✓ Analog signal processing
	 Display integration
	 Power optimization
6	Smart Energy Meter Project Overview: Create a PCB to measure and display household power usage using current and voltage sensors. Skills Focused On:
6.	 Current and voltage sensing
	✓ Safety design
	✓ High-voltage PCB design
7.	 Home Security Alarm Project Overview: Design a PCB for a security alarm system using IR sensors for intrusion detection and a buzzer as the alarm. Skills Focused On: ✓ Sensor-triggered event handling ✓ Buzzer driving ✓ Power routing
8.	 Portable Weather Station Project Overview: Develop a PCB for a weather station that measures temperature, humidity, and atmospheric pressure and logs data. Skills Focused On: ✓ Sensor data logging ✓ Low-power design ✓ PCB layout for modular components
9.	Smart Light Dimmer Project Overview: Create a PCB to dim an AC bulb using a TRIAC-based dimming circuit controlled by a microcontroller. Skills Focused On: ✓ AC power control ✓ Signal isolation ✓ High-voltage PCB safety

	Solar-Powered IoT Device Project Overview: Design a PCB for a solar-powered IoT device to monitor environmental conditions and send data to the cloud. Skills Focused On:
10.	Renewable energy integration
	✓ Battery management
	 IoT communication
11.	Air Quality Monitoring System Project Overview: Design a PCB to measure air quality parameters like CO2 levels, temperature, and humidity using sensors, and display the data on an OLED screen. Skills Focused On: ✓ Sensor integration ✓ Power management ✓ Real-time data display
12.	Industrial Equipment Vibration Monitor Project Overview: Build a PCB to monitor vibrations in industrial machines using an accelerometer and display the data on a monitoring system. Skills Focused On: ✓ Accelerometer interfacing ✓ Signal filtering ✓ Wireless communication
13.	Smart Doorbell System Project Overview: Design a PCB for a smart doorbell that detects visitors using a motion sensor and sends notifications to a mobile app. Skills Focused On: ✓ Motion detection ✓ Wi-Fi communication ✓ Compact PCB design
14.	Smart Thermostat Project Overview: Develop a PCB for a thermostat that controls heating/cooling systems based on temperature readings. Skills Focused On: ✓ Temperature sensing ✓ Relay control ✓ High-power PCB design
15.	Automated Street Light System Project Overview: Build a PCB for an automated street lighting system that turns on lights based on ambient light levels. Skills Focused On: ✓ Light sensing

	✓ Power relay control
	✓ Safe PCB design.
16.	 Wireless Data Logger Project Overview: Design a PCB for a wireless data logger that records environmental data and sends it to the cloud. Skills Focused On: ✓ Data logging ✓ Wireless transmission ✓ Low-power design
17.	Smart Trash Bin Project Overview: Create a PCB for a smart trash bin that uses an ultrasonic sensor to detect bin fullness and alerts the user. Skills Focused On: ✓ Ultrasonic sensing ✓ IoT communication ✓ Efficient PCB design
18.	Bluetooth-Controlled Robot Project Overview: Develop a PCB for a robot that can be controlled via a Bluetooth-enabled mobile app. Skills Focused On: ✓ Motor control ✓ Bluetooth communication ✓ Modular PCB design
19.	 Energy Harvesting System Project Overview: Build a PCB to harvest energy from a solar panel or piezoelectric device and store it in a battery. Skills Focused On: ✓ Renewable energy integration ✓ Efficient power management ✓ Compact design
20.	 IoT-Based Fire Detection System Project Overview: Design a PCB for a fire detection system using a flame sensor and gas sensor, with alerts sent via Wi-Fi. Skills Focused On: ✓ Fire detection ✓ IoT communication ✓ Signal isolation in PCB design

Annexure III: Assessment Rubrics							
COURSE ASSESSMENT RUBRICS (TOTAL MARKS: 70)ASSESSMDESCRIBE THE CRITERIA OF THE BELOWENTCATEGORY PERFORMANCE							
CRITERIA	FAIR (50- 64%)	GOOD (65- 79%)	EXCELLENT (80- 100%)	MARKS			
1. Perfor mance Skill Level	Fundamental performance; exhibits limited application of skills and understanding ; requires substantial development to align with industry expectations.	Demonstrates solid performance; fulfills expectations with	Exceptional performance; demonstrates advanced proficiency and outstanding problem-solving abilities; fully prepared for professional roles	20			
2. Techni cal Knowle dge	Exhibits limited technical knowledge with minimal application and understanding ; requires substantial improvement to meet industry standards	Displays solid technical knowledge, meeting expectations with some minor gaps; capable of performing tasks independently while requiring occasional guidance.	exceptional technical expertise, consistently surpassing	15			
3. Project Executi on	Limited performance; shows basic understanding and application of skills; requires considerable improvement to align with industry standards in project execution	Solid performance; meets expectations with only minor areas for improvement; able to execute project tasks independently, requiring occasional support or guidance.	Exceptional performance; consistently surpasses expectations by demonstrating advanced skills and innovative problem-solving; well-prepared for	25			
4. Comm unicati on and	Limited performance; shows minimal	Effective communication and reporting;	Exceptional performance; consistently				

Reporti	ability in	consistently meets	surpasses	
ng	communicatio n and	expectations with some minor areas for improvement; able to handle	expectations with advanced skills and innovative problem-solving; fully prepared for professional roles	10