Annexure I: Course Curriculum

TABLE 1: MODULE-WISE COURSE CONTENT AND OUTCOME					
SL.NO	MODULE NAME	MODULE CONTENT	MODULE LEARNING OUTCOME	DURATION (HRS)	
1	Introduction to Data in Process Industries	Understanding types of data (operational, sensor, historical) and their relevance.	Gain foundational knowledge of data usage and its impact on decision-making and efficiency in industries like manufacturing.	4	
2	Data Collection and Preprocessing	Data collection from industrial sources (IoT, SCADA), data cleaning, handling missing values, and transformations.	Learn to collect, clean, and preprocess data for analytics, ensuring data quality and reliability	5	
3	Predictive Maintenance Models	Using historical and real-time data to build predictive models for equipment failure.	Build and evaluate predictive models for machinery failure, optimizing maintenance schedules.	5	
4	Process Optimization Techniques	Applying optimization techniques (Linear Programming, Genetic Algorithms) to improve yield and efficiency while reducing waste.	Optimize industrial processes to enhance production and reduce costs.	5	
5	Real-Time Data	Setting up real-	Implement real-	4	

	Analytics for	time data	time systems to	
	Process Control	pipelines,	monitor, analyze,	
		developing	and control	
		control systems,	industrial	
		and monitoring	processes	
		for process	dynamically.	
		deviations.		
6	Statistical	Designing SPC	Monitor and	4
	Process Control	charts, detecting	control process	
	(SPC)	out-of-control	performance	
		conditions, and	using SPC	
		improving	techniques.	
		process stability		
		and quality.		
7	Machine	Applying	Solve real-world	5
	Learning for	supervised (e.g.,	optimization	
	Process	regression,	problems using	
	Optimization	classification)	machine learning	
		and unsupervised	techniques.	
		(e.g., clustering,		
		anomaly		
		detection)		
		learning		
		algorithms to		
		process data.		
8	Data	Creating	Develop	4
	Visualization for	dashboards and	visualizations and	
	Industrial	reports using	interactive	
	Insights	tools like Tableau	dashboards to aid	
		and Power BI,	in decision-	
		and presenting	making for	
		actionable	stakeholders.	
		insights to		
		decision-makers.		
9	Time Series	Building time	Predict future	5
	Modeling and	series models	production needs	
	Forecasting	(ARIMA,	and optimize	
		Exponential	supply chain and	
		Smoothing,	resource	
		Prophet) for	management.	
		production		
		demand		

		forecasting and		
		resource		
		allocation.		
10	Capstone	Integrating	Apply learned	4
	Project:	predictive	skills in a real-	
	Industrial Data	maintenance,	world scenario,	
	Analytics	optimization, and	presenting	
	Implementation	real-time	actionable	
		monitoring into a	insights and	
		comprehensive	solutions to	
		solution and	industry	
		presenting to	challenges.	
		stakeholders.		

Annexure II: Use cases and Test Projects

TABLE 2: OVERALL COURSE LEARNING OUTCOME ASSESSMENT					
CRITERIA AND USECASES					
LEARNING	ASSESSMENT	PERFORMANCE	USECASES		
OUTCOME	CRITERIA	CRITERIA			
Understand	Ability to	Identify key	Predicting failures in		
predictive	preprocess	features from	manufacturing		
maintenance	historical and	sensor data, build	equipment to reduce		
techniques	real-time data,	ML models like	downtime and		
and build ML	select suitable	Random Forest or	optimize		
models to	algorithms, and	SVM, and validate	maintenance costs.		
predict	evaluate model	accuracy to predict			
equipment	performance.	maintenance needs.			
failures.					
Learn to apply	Ability to	Build energy usage	Reducing energy		
optimization	analyze energy	models, optimize	consumption in		
algorithms for	usage data and	consumption	chemical plants		
energy	apply	patterns, and assess	while maintaining		
efficiency and	techniques like	impact on cost and	output.		
cost reduction.	Linear	operational			
	Programming	efficiency.			
	or Genetic				
	Algorithms.				
Develop real-	Proficiency in	Use IoT and SCADA	Ensuring product		
time	setting up real-	systems to collect	quality in food		
monitoring	time data	data, implement	processing with real-		
systems to	pipelines and	real-time anomaly	time data		
ensure product	integrating	detection models,	monitoring.		
quality.	quality metrics	and maintain			
	for process	consistent quality			
	control.	standards.			
Understand	Ability to	Monitor critical	Ensuring stability		
process	configure real-	parameters like	and efficiency in oil		
control	time control	temperature and	refining processes.		
systems and	mechanisms	pressure, adjust			
implement	and evaluate	process conditions			
real-time	their impact on	dynamically, and			
adjustments	process	optimize operational			
using	variables.	efficiency.			
analytics.					

Forecast	Evaluate	Build demand	Improving supply
demand and	demand	forecasting models,	chain efficiency and
optimize	patterns using	integrate supply	reducing
supply chain	forecasting	chain optimization	overstock/shortages
logistics.	models like	tools, and validate	in beverage
	ARIMA or	predictions with	manufacturing.
	Prophet and	historical data.	
	optimize		
	inventory		
	levels.		
Learn to	Proficiency in	Use data analytics	Minimizing material
identify	analyzing	to identify sources	wastage and
inefficiencies	production data	of waste, implement	reducing production
in production	and applying	waste-reduction	costs in textile
processes and	process	strategies, and	factories.
minimize	optimization	measure	
waste.	techniques.	performance	
		improvements.	
Apply data	Analyze water	Monitor water	Reducing water
analytics to	usage data,	consumption,	consumption in dairy
optimize	Identify	optimize usage for	processing plants.
resource	patterns, and	cleaning/processing,	
usage and	appiy	and ensure	
reduce waste.	optimization		
	algorithms for	sustainability goals.	
	allocation		
Build	Configure	Set up sensors to	Maintaining
automated	temperature	monitor	temperature
systems for	monitoring	temperature, build	standards in
maintaining	systems and	anomaly detection	pharmaceutical
optimal	develop models	models, and	manufacturing to
production	for real-time	implement dynamic	ensure product
temperatures.	adjustments.	control systems.	quality.
Develop	Ability to	Build and test	Identifying and
anomaly	preprocess	models like Isolation	addressing
detection	sensor data and	Forest or	equipment issues in
models to	apply machine	Autoencoders to	industrial assembly
ensure	learning models	identify anomalies in	lines.
equipment	for anomaly	sensor data.	
reliability.	detection.		

Analyze	Identify root	Use tools like Power	Reducing production
downtime	causes of	BI to visualize	downtime in
patterns to	downtime using	downtime data,	manufacturing.
optimize	data	identify trends, and	
production	visualization	suggest actionable	
schedules.	and statistical	insights.	
	methods.		
Implement	Ability to set up	Develop real-time	Optimizing HVAC
real-time	IoT devices,	data pipelines,	performance in
monitoring for	collect real-	analyze HVAC	industrial buildings.
HVAC systems	time data, and	efficiency metrics,	
to ensure	analyze for	and implement	
efficiency.	operational	control systems for	
	optimization.	energy savings.	
Learn to apply	Analyze stock	Build inventory	Streamlining
analytics for	data, forecast	management	inventory processes
inventory	inventory	models, integrate	in chemical
optimization	needs, and	them with	warehouses.
and cost	minimize	operational data,	
savings.	holding costs.	and validate their	
		efficiency.	
Optimize batch	Improving	Improving efficiency	Improving efficiency
production	efficiency in	in pharmaceutical	in pharmaceutical
schedules and	pharmaceutical	batch processing.	batch processing.
processes	batch		
using	processing.		
analytics.			
Learn to	Analyze	Build models to	Maximizing
optimize asset	maintenance	predict optimal	equipment lifespan
usage and	and usage	replacement times	and minimizing
extend	data, applying	and integrate	downtime costs.
equipment	lifecycle	findings into asset	
lifecycle	management	management	
through	frameworks.	systems.	
analytics.			
Predict future	Ability to build	Apply models like	Reducing energy
energy needs	forecasting	ARIMA to forecast	consumption and
using historical	models and	energy demand and	costs in cement
data and	validate them	use findings to	production.
optimize	against	optimize operational	
usage.	historical	costs.	
	consumption		

	patterns.		
Balance	Analyze	Use optimization	Minimizing costs
production	demand and	models to plan	while meeting
demand with	supply data and	production	production targets.
supply chain	apply	schedules and	
constraints	optimization	inventory levels	
through	techniques to	efficiently.	
optimization.	improve		
	balance.		

TABLE 3: LIST OF FINAL PROJECTS (20 PROJECTS THAT					
СОМЕ	COMPREHENSIVELY COVER ALL THE LEARNING OUTCOME)				
SL.NO	FINAL PROJECT				
1	Predictive Maintenance for Manufacturing Equipment				
2	Energy Optimization in a Chemical Plant				
3	Real-Time Quality Control in a Food Processing Unit				
4	Process Control in an Oil Refinery				
5	Supply Chain Forecasting for a Beverage Manufacturing Plan				
6	Waste Reduction in a Textile Factory				
7	Optimization of Water Usage in a Dairy Processing Plant				
8	Temperature Control System in a Pharmaceutical Manufacturing Unit				
9	Sensor Data Anomaly Detection in an Industrial Assembly Line				
10	Production Downtime Analysis in a Manufacturing Facility				

11	Real-Time Monitoring System for HVAC Systems in Industrial Buildings
12	Inventory Management Optimization in a Chemical Warehouse
13	Batch Process Optimization in a Pharmaceutical Factory
14	Asset Lifecycle Management for Industrial Equipment
15	Energy Consumption Forecasting in a Cement Factory
16	Demand-Supply Optimization in a Manufacturing Unit
17	Real-Time Process Visualization for a Steel Plant
18	Sensor Data Integration for Automated Control in a Mining Operation
19	Predictive Analytics for Stock Price Movements in an Oil & Gas Company
20	Automated Anomaly Detection in Water Treatment Plant Operations

Annexure III: Assessment Rubrics

TABLE 4: COURSE ASSESSMENT RUBRICS (TOTAL MARKS: 70)					
ASSESSMENT CRITERIA	DESCRIBE THE CRITERIA OF THE BELOW CATEGORY PERFORMANCE			TOTAL MARKS	
	FAIR	GOOD	EXCELLENT		
MCQ/Programming/Project Submission Round	Above 40	Above 55	Above 65	70	

Category	Assessment	Performance	Weightage
	Criteria	Levels	(Marks)
Practical Skills Proficiency	Demonstrates ability to perform job- specific tasks effectively, using relevant tools, techniques, or methodologies (e.g., Tally for accounting, consignment tracking).	Fair, Good, Excellent	20
Technical Knowledge Application	Applies theoretical concepts to practical scenarios with accuracy and relevance (e.g., compliance with GST laws, financial planning, or logistics protocols).	Fair, Good, Excellent	15

Project Execution	Completes assigned projects or use cases demonstrating innovation, thoroughness, and skill application relevant to industry standards.	Fair, Good, Excellent	25
Communication and	Clearly presents	Fair,	10
Reporting	findings, solutions, or project outcomes using professional communication and documentation standards (e.g., reports, presentations).	Good, Excellent	