ANNEXURE I

	MODULE-WISE COURSE CONTENT AND OUTCOME					
SL .N O	MODULE NAME	MODULE CONTENT	MODULE LEARNING OUTCOME	DURATI ON (HRS)		
1	Introduction to Digital Twin	Introduction - Overview and evolution of Digital Twin technology - Key components: physical systems, and data integration - Applications in industries like manufacturing, healthcare, and smart cities - Benefits of Digital Twins in predictive maintenance and operational efficiency - Challenges and ethical considerations in Digital Twin implementation.	 Apply the concept, evolution, and components of Digital Twin technology. Explore applications and benefits in industries like manufacturing, healthcare, and smart cities. Identify challenges and ethical considerations in 	9hrs		
2	Foundation s of Digital Twin	Data acquisition from physical systems using IoT and sensors - Real- time data streaming and processing techniques - Creating virtual models using CAD and simulation tools - Communication protocols for Digital Twin systems - Integration of AI/ML for predictive and prescriptive analytics.	 Build and visualize virtual models of physical devices. Apply IoT protocols for seamless data communication between systems. Evaluate and interpret system data to create virtual twins. 	9hrs		
3	Building and Implement	Steps to design and deploy a Digital Twin system - Tools and	 Create functional Digital Twins with synchronized real- 	9hrs		

	ing Digital Twins	platforms for Digital Twin creation - Synchronizing real-time data with virtual models - Case studies of successful Digital Twin implementations - Troubleshooting and maintaining Digital Twin systems.	 time updates. Simulate system behavior using advanced tools like Unity or MATLAB. Integrate real-world data streams with virtual environments effectively. 	
4	Future Trends	Exploring advancements in Digital Twin technologies - Scalability and interoperability in large- scale systems	 Develop prototypes for innovative Digital Twin applications. 	9hrs
5	Innovation in Digital Twin	- Potential impact on Industry 4.0 and beyond - Sustainability and environmental applications - Emerging opportunities and career pathways in Digital Twin development.	 Incorporate eco- friendly and sustainable practices in Digital Twin designs. Explore next- generation technologies like AR/VR to enhance user interaction. 	9hrs

ANNEXURE II

OVERALL COU	OVERALL COURSE LEARNING OUTCOME ASSESSMENT CRITERIA AND USECASES				
LEARNING OUTCOME	ASSESSMENT CRITERIA	PERFORMANCE CRITERIA	USECASES		
 Understand how digital twins enhance building energy efficiency and system optimization . Develop skills to simulate and optimize building systems. Learn predictive maintenance for building equipment. Apply real- time data for energy conservation and operational improvemen ts. 	 Ability to model building systems effectively. Successful implementation of energy optimization algorithms. Improved efficiency in HVAC, lighting, and electrical systems. Reduction in energy consumption and operational costs. 	 Create a digital model of the building, including floor plans and HVAC systems. Collect real-time sensor data (temperature, humidity, occupancy). Analyze energy usage patterns and optimize HVAC control. Implement predictive maintenance for building systems. Monitor and optimize resource consumption and comfort levels. 	Use Case 1 - Smart Building Management Scenario: A facility manager wants to optimize energy usage and improve building efficiency. Task: Create a digital model of the building's structure and systems (HVAC, lighting, etc.). Collect real-time sensor data (temperature, occupancy). Analyze energy usage and optimize HVAC control. Implement predictive maintenance for building systems. Monitor and optimize resource consumption and comfort levels.		
 Understand digital twins' role in optimizing traffic flow in urban environments. Learn how to manage and predict traffic 	 traffic model. Demonstrated reduction in traffic congestion. Effective route 	 city's traffic infrastructure (roads, signals, and sensors). Collect traffic flow data from 	Use Case 2 - Smart City Traffic Management Scenario: A city needs to improve traffic flow and reduce congestion. Task: Build a digital		

 congestion. Apply real- time data to optimize traffic signals and routes. Gain skills in creating and testing traffic management models. 	vehicles. Improved traffic flow and reduced travel time.	 cameras, and GPS devices. Implement algorithms to predict traffic congestion and optimize signal timings. Simulate and test various traffic management scenarios. Implement dynamic traffic signal control and adaptive routing. 	model of the city's traffic infrastructure. Collect data from traffic sensors, cameras, and GPS devices. Implement algorithms to predict traffic congestion and optimize signal timings. Simulate and test traffic management scenarios. Implement dynamic signal control and adaptive routing.
 Understand the application of digital twins in predictive maintenance for industrial • machines. Learn how to monitor equipment in real-time. Develop skills in fault detection and anomaly prediction. Optimize maintenance schedules and reduce downtime. 	Creation of effective digital twin models for industrial equipment. Accurate detection of faults and system inefficiencies. Reduced machine downtime through predictive maintenance. Improved asset performance and cost savings.	 Create a digital twin of factory machinery. Collect operational data (temperature, vibrations, power consumption). Train predictive models to identify potential failures or inefficiencies. Set up alarms and alerts for anomalous behavior. Implement realtime monitoring and predictive maintenance. 	Use Case 3 Industrial Equipment Monitoring3 -Scenario: A factory wants to monitor and maintain machinery to prevent breakdowns.Task: Create a digital twin of factory machinery. Collect real-time data on machine performance (temperature, vibrations, power consumption). Train predictive models to detect potential failures or inefficiencies. Set up alerts for anomalous behavior. Implement real-time monitoring and predictive

			maintenance.
 Learn to apply digital twins for continuous health monitoring. Develop predictive models for patient health risks. Gain insights into real-time patient care optimization. Understand the role of digital twins in personalized medicine. 	 integration of real-time health monitoring data. Effective predictive models for patient condition forecasting. Demonstrated improvement in patient care management. Reduced health 	 a patient's health metrics (heart rate, blood pressure, etc.). Collect continuous health data via wearable sensors. 	Use Case 4 - Healthcare Patient Monitoring Scenario: A hospital wants to continuously monitor patient health data and predict health risks. Task: Develop a digital twin of a patient's health metrics. Collect continuous data from wearable sensors. Analyze data to predict health risks (e.g., heart attack, stroke). Notify healthcare providers in case of critical health issues. Provide real-time updates to doctors and patients.
 Learn how digital twins simulate autonomous vehicle behavior. Understand how to optimize autonomous vehicle navigation. Gain expertise in testing and validating autonomous algorithms. 	 Creation of a digital twin of the vehicle's sensor systems. Successful optimization of autonomous driving algorithms. Effective simulation of driving scenarios for algorithm testing. Improved vehicle 	 twin of the vehicle and its environment. Collect data from sensors like LIDAR, cameras, and GPS. Simulate different driving scenarios and 	Use Case 5 - Autonomous Vehicle Simulation Scenario: A company is developing self- driving cars and needs to test their behavior in various environments. Task: Build a digital twin of the vehicle and its environment. Collect data from sensors like LIDAR, cameras, and GPS. Simulate different

•	Develop skills in vehicle safety and performance enhancement.	performance and safety metrics.	alg Co up im ve caj ba	vigation Jorithms. Intinuously date and prove the hicle's pabilities sed on real- orld feedback.	driving scenarios and traffic conditions. Test autonomous navigation algorithms. Continuously update and improve the vehicle's capabilities based on real-world feedback.
•	Understand the role of digital twins in supply chain visibility and management. Learn how to predict demand and optimize inventory management. Gain skills in logistics optimization. Understand how to reduce costs and improve supply chain efficiency.	 Creation of a digital twin of the supply chain. Effective use of demand forecasting and inventory optimization. Improved logistics management and reduced delays. Demonstrated cost reduction and faster order fulfillment. 	tw en cha (w inv su • Co tim stc shi pro sta • Us an for de op lev • Mc an rou go • Im tim sta	tire supply ain arehouses, ventory, ppliers). llect real- ne data on ock levels, ipments, and oduction atus. e predictive alytics to recast mand and timize stock vels. onitor logistics d optimize uting of ods.	Use Case 6 - Supply Chain Optimization Scenario: A retailer wants to optimize its supply chain to reduce costs and improve delivery times. Task: Create a digital twin of the supply chain, including warehouses, inventory, and suppliers. Collect data on stock levels, shipments, and production status. Use predictive analytics to forecast demand and optimize stock levels. Monitor logistics and optimize routing of goods. Implement real-time tracking for supply chain visibility.
•	Understand how digital twins optimize energy distribution and grid performance.	 Successful modeling of the energy grid infrastructure. Effective demand forecasting and 	tw en inc pla tra	eate a digital in of the ergy grid, cluding power ants, insformers, d distribution	Use Case 7 - Energy Grid Optimization Scenario: An energy provider wants to optimize power distribution and

•	Learn how to predict energy demand and balance loads. Develop skills in monitoring and preventing grid failures. Gain knowledge in implementing sustainable energy practices.	 load balancing. Reduced grid failure and downtime. Improved energy efficiency and sustainability. 	 lines. Collect realtime data on energy consumption and production. Analyze the grid for inefficiencies and predict potential outages. Optimize energy distribution and load balancing. Implement automated demand-response systems to adjust consumption patterns.
	Understand how digital twins optimize store layout and customer experience. Learn how to monitor inventory in real-time and optimize stock. Apply data analytics for improving sales and operational efficiency. Understand customer behavior patterns using digital twin data.	 Successful modeling of the store layout and inventory. Improved stock levels and reduced product shortages. Enhanced customer experience through data- driven decisions. Demonstrated improvements in sales and operational efficiency. 	 Develop a digital model of the store layout, inventory, and customer traffic patterns. Collect data on sales, stock levels, and customer behavior. Use machine learning to predict which products will sell best at certain times. Optimize inventory management and restocking schedules. Personalize promotions and in-store experiences for Use value for the energy of the store distribution and load to the energy of the store experiences for

		customers.	
 Understand how digital twins can enhance crop yield and livestock health. Learn precision agriculture techniques for resource optimization. Apply real- time monitoring to improve farming outcomes. Gain knowledge of sustainable farming practices using digital twins. 	 Successful creation of a digital twin model for farm management. Improved crop yield and livestock health with data-driven insights. Effective use of precision agriculture for resource optimization. Reduced environmental impact and improved sustainability. 	 Collect environmental data (soil moisture, temperature, humidity). 	Use Case 9 - Smart Farming Scenario: A farmer wants to increase crop yield and monitor livestock health efficiently. Task: Create a digital twin of the farm, including crops, livestock, and irrigation systems. Collect environmental data (soil moisture, temperature, humidity). Implement precision farming techniques for irrigation. Predict crop yields and livestock health. Monitor and adjust farming practices in real-time.
 Understand how digital twins optimize construction project timelines and resources. Learn how to improve worker safety through digital simulations. Apply simulation for better construction planning and 	 Successful creation of a digital twin for construction project management. Improved project timelines and resource utilization. Enhanced worker safety through risk simulations. Reduced delays and improved construction 	 progress and resource usage. Monitor worker safety and site conditions in real-time. 	Use Case 10 Construction Site ManagementScenario:A construction company wants to optimize project timelines and worker safety.Task:Build a digital twin of the construction site, including machinery, workers, and materials. Collect data on construction progress and

risk management. • Develop skills in improving construction productivity.	outcomes.	allocation. • Simulate construction scenarios to improve planning and decision- making.	resource usage. Monitor worker safety and site conditions. Optimize scheduling and resource allocation. Simulate construction scenarios for better planning and decision-making.
 Understand how digital twins optimize water usage and distribution. Learn how to predict and prevent water shortages. Apply real- time data to improve water quality management. Gain skills in sustainable water resource management. 	 Successful creation of a digital twin for water distribution systems. Improved water usage efficiency and reduced waste. Effective water quality monitoring and management. Demonstrated sustainability improvements in water usage. 	 Create a digital twin of the water distribution system, including pipes, reservoirs, and treatment plants. Collect realtime data on water flow, pressure, and quality. Monitor system performance and identify potential leaks or inefficiencies. Implement predictive models for water demand forecasting. Optimize water distribution and conservation efforts. 	Use Case 11 - Smart Water Management Scenario: A municipality wants to optimize water usage and prevent waste. Task: Create a digital twin of the water distribution system. Collect data on water flow, pressure, and quality. Monitor system performance and identify potential leaks or inefficiencies. Implement predictive models for water demand forecasting. Optimize water distribution and conservation efforts.
 Understand how digital twins optimize aircraft performance. Learn predictive maintenance techniques for 	 Successful modeling of aircraft performance. Improved predictive maintenance for aircraft components. 	 Build a digital twin of the aircraft, including engines, avionics, and structural components. Collect flight 	Use Case 12 - Aircraft Performance Monitoring Scenario: An airline wants to monitor aircraft performance and predict

 the aviation industry. Apply data analytics to improve fuel efficiency. Gain skills in improving aviation safety and reliability. 	 Enhanced fuel efficiency and reduced operating costs. Demonstrated improvements in flight safety and reliability. 	 data (speed, altitude, engine performance). Predict maintenance needs based on real-time performance data. Implement condition-based maintenance scheduling. Optimize flight performance for fuel efficiency and safety. 	maintenance needs. Task: Build a digital twin of the aircraft, including engines, avionics, and structural components. Collect data on flight performance (speed, altitude, engine conditions). Predict maintenance needs based on performance data. Implement condition- based maintenance scheduling. Optimize fuel efficiency and safety.
 Understand how digital twins optimize electric vehicle charging. Learn how to predict and balance charging demand. Develop skills in managing charging stations and infrastructure. Understand how to improve grid efficiency with EV integration. 	 Successful modeling of electric vehicle charging infrastructure. Effective load balancing and charging demand prediction. Improved grid integration for efficient energy use. Reduced peak load and improved EV charging station efficiency. 	 charging network and vehicles. Collect data on vehicle battery levels, charging station utilization, and grid status. Implement real- time monitoring and load balancing for efficient charging. 	Use Case 13 - Smart Grid for Electric Vehicles Scenario: A city wants to manage the charging infrastructure for electric vehicles (EVs) efficiently. Task: Create a digital twin of the EV charging network. Collect data on vehicle battery levels, station usage, and grid status. Implement real-time monitoring and load balancing for efficient charging. Predict charging demand and optimize station placement. Integrate renewable energy sources for sustainable charging.

home automa system Learn manag energy consum efficier Develo to au househ appliar based insight Unders how improv comfor	digital optimize ation ns. how to e nption ntly. p skills utomate nold nces on data s. stand to re user t h smart	 Successful implementation of smart home automation features. Demonstrated energy savings through automation and optimization. Improved user experience and comfort with automation. Reduced operational costs through efficient energy management. 	•	Develop a digital twin of a smart home, including appliances, lighting, and HVAC systems. Collect data on energy usage, temperature, and occupancy. Implement automation routines based on user preferences and habits. Use machine learning to predict and optimize energy consumption. Monitor home security and health parameters (e.g., air quality).	Use Case 14 - Smart Home Automation Scenario: A homeowner wants to automate the management of home appliances and energy consumption. Task: Develop a digital twin of the smart home, including appliances, lighting, and HVAC systems. Collect data on energy usage, temperature, and occupancy. Implement automation routines based on user preferences. Optimize energy consumption using machine learning. Monitor security and health parameters (air
 railway system mainte schedu Learn detect and failures real-tir Develo to preo preven railway 	digital optimize mance iles. faults system s in me. p skills dict and t ructure	 Creation of effective digital models for railway systems. Accurate fault detection and failure prediction. Improved system uptime and reliability. Reduced maintenance costs and downtime. 	•	Create a digital twin of the railway system, including tracks, stations, and trains. Collect data on train performance, track condition, and weather. Implement predictive models to identify potential breakdowns. Monitor train schedules and optimize	 quality, temperature). Use Case 15 - Predictive Maintenance for Railway Systems Scenario: A railway company wants to prevent breakdowns and optimize maintenance schedules. Task: Create a digital twin of the railway system, including tracks, stations, and trains. Collect data on train performance, track conditions, and weather. Use

insights for improving railway system reliability.		 maintenance activities. Implement real- time alerts for train malfunctions and delays. 	predictive models to forecast potential failures. Monitor train schedules and optimize maintenance activities. Implement real-time alerts for malfunctions.
 Understand how digital twins monitor and optimize EV battery performance. Learn how to predict battery health and lifespan. Develop skills in optimizing charging behavior and energy usage. Apply real- time data to improve battery efficiency and longevity. 	 Successful modeling of electric vehicle battery systems. Effective prediction of battery health and lifespan. Improved battery performance through optimization techniques. Increased energy efficiency and extended battery life. 	 battery system, including individual cells and battery packs. Collect real- time data on temperature, charge cycles, and battery health. Implement algorithms to optimize battery usage and 	Use Case 16 - Electric Vehicle Battery Management Scenario: An EV manufacturer wants to extend the lifespan of their vehicle batteries. Task: Build a digital twin of the EV battery system, including individual cells and battery packs. Collect real-time data on temperature, charge cycles, and battery health. Implement algorithms to optimize battery usage and longevity.
 Understand how digital twins optimize oil and gas pipeline monitoring. Learn predictive models for preventing leaks and 	 Creation of digital models for pipeline monitoring. Accurate fault detection and leak prediction. Reduced environmental risks and improved 	 Create a digital twin of the pipeline, including pumps, valves, and sensors. Collect data on pressure, flow rate, and temperature along the 	Use Case 17 - Oil & Gas Pipeline Monitoring Scenario: An oil company wants to detect leaks and optimize pipeline maintenance. Task: Create a digital twin of the pipeline,

 failures. Develop skills in real-time condition monitoring of pipelines. Understand how to enhance pipeline safety and efficiency using digital twins. 	 pipeline safety. Improved pipeline efficiency and reduced operational costs. 	 pipeline. Monitor for anomalies, such as leaks or blockages. Implement predictive models to forecast pipeline failures. Optimize maintenance schedules and repair times. 	including pumps, valves, and sensors. Collect data on pressure, flow rate, and temperature. Monitor for leaks or blockages. Implement predictive models to forecast pipeline failures. Optimize maintenance schedules and response times.
 Learn how digital twins improve manufacturing process efficiency. Understand how to optimize production lines and workflows. Gain expertise in defect detection and quality control. Develop skills in integrating automation into manufacturing . 	 Successful implementation of digital twin- based manufacturing systems. Improved production line efficiency and workflow optimization. Enhanced quality control and defect detection. Increased manufacturing capacity and reduced operational costs. 	automated inventory management and sorting.	Use Case 18 - Smart Warehouse Management Scenario: A warehouse manager wants to optimize space and improve order fulfillment. Task: Build a digital model of the warehouse layout, including shelves, robots, and inventory. Collect data on stock levels, order fulfillment, and robot movements. Implement automated inventory management and sorting. Optimize space usage and product placement. Predict order trends and manage stock replenishment.
 Understand how digital twins optimize aerospace manufacturing 	 Effective use of digital twins to improve part quality. Enhanced 	 Create a digital twin of the vessel fleet, including ship models and 	Use Case 19 - Marine Vessel Fleet Management Scenario: A shipping

 processes. Learn how to improve part quality and minimize defects. Develop skills in optimizing production workflows. Gain knowledge in predictive maintenance for aerospace components. 	 assembly lines. Reduced manufacturing defects and improved product quality. Improved maintenance scheduling for aerospace 	 cargo. Collect data on vessel speed, fuel usage, and weather conditions. Implement route optimization algorithms to save fuel and time. Monitor vessel performance and predict maintenance needs. Optimize cargo loading and unloading processes. 	company wants to optimize fuel usage and vessel performance. Task: Create a digital twin of the fleet, including ship models and cargo. Collect data on vessel speed, fuel consumption, and weather conditions. Implement route optimization algorithms for fuel efficiency. Monitor vessel performance and predict maintenance needs. Optimize cargo loading and unloading.
 Learn how digital twins monitor environmental conditions. Understand how to predict environmental changes and natural disasters. Apply real-time data to environmental decision-making. Gain skills in using digital twins for sustainable environmental practices. 	creation of environmental monitoring systems using digital twins. • Accurate prediction of environmental changes and natural disasters. • Improved response to environmental risks and disasters. • Enhanced	 Develop a digital model of the renewable energy grid, including wind turbines, solar panels, and energy storage systems. Collect realtime data on energy production and consumption. Predict energy demand and optimize energy distribution. Integrate energy storage and backup systems to handle intermittent power supply. 	 Use Case 20 - Smart Grid for Renewable Energy Scenario: An energy provider wants to integrate renewable energy sources efficiently into the grid. Task: Build a digital model of the renewable energy grid, including wind turbines, solar panels, and energy storage. Collect real-time data on energy production and consumption.

LIST OF FINAL PROJECTS (20 PROJECTS THAT COMPREHENSIVELY COVER ALL THE LEARNING OUTCOME)		
SL.NO	FINAL PROJECT	
1	Smart Building Management	
2	Smart City Traffic Management	
3	Industrial Equipment Monitoring	
4	Healthcare Patient Monitoring	
5	Autonomous Vehicle Simulation	
6	Supply Chain Optimization	
7	Energy Grid Optimization	
8	Retail Store Management	
9	Smart Farming	
10	Construction Site Management	
11	Smart Water Management	
12	Aircraft Performance Monitoring	
13	Smart Grid for Electric Vehicles	
14	Smart Home Automation	
15	Predictive Maintenance for Railway Systems	
16	Electric Vehicle Battery Management	
17	Oil & Gas Pipeline Monitoring	
18	Smart Warehouse Management	
19	Marine Vessel Fleet Management	
20	Smart Grid for Renewable Energy	

ANNEXURE III

COURSE ASSESSMENT RUBRICS (TOTAL MARKS: 70)				
ASSESSM ENT	DESCRIBE CAT	TOTAL MARKS		
CRITERIA	FAIR	GOOD	EXCELLENT	
Practical Skills	Basic implementatio n with significant errors	Working simulation with minor errors.	Accurate and highly functional simulation.	20
Technical Knowledge	Limited understanding of concepts.	Strong understanding with minor gaps.	In-depth understanding with innovative applications.	15
Project Execution	Meets minimum requirements with room for improvement.	Completes project with clear understanding.	Exceeds expectations with innovative features.	25
Communic ation and Reporting	Communicatio n is unclear and lacks detail	Clear and structured presentation with minor gaps.	Professional and detailed reporting with excellent visuals.	10