ANNEXURE I

Days	ys Description of the content to be covered		
Unit 1	: Foundation of Green Skilling, Sustainability, and AI	4	
Contrib	utions		
	Chapter 1: Green skilling and Sustainability		
	\cdot Environmental Awareness and Literacy	2	
	\cdot Sustainable Practices and Resource Management		
	\cdot Green Technologies and Innovation		
	· Adaptation to Green Job Markets		
	· Government and Institutional Support		
	 Role of Education and Training Institutions 		
	Lab/Case Studies		
	\cdot Introduction to Skill Council for Green Jobs (SCGJ)	2	
	\cdot Swachh Bharat Mission (Waste Management)		
Unit	2: Python Programming for Green Skilling and	10	
Sustair	ability		
	Chapter 1: Introduction to Python	2	
	\cdot What is Python? Overview of Python's features and advantages.		
	\cdot Installation: How to install Python and set up a		

development environment (e.g., using Anaconda)	
\cdot Variables and Data Types: Integers, floats, strings, and	
Booleans.	
· Control Structures: If-else statements, loops (for,	
functions.	
Lab/ Case Studies	
• Installing Python and setting up the environment	2
(Python / Anaconda, and VS Code)	
\cdot Creating Python Variables and Assigning values to	
Variables with different data types.	
\cdot To implement control structures with a climate dataset	
using Python to filter, manipulate, and analyze the data.	

Chapter 2: Python Syntax and Fundamentals	1
 Variables and Data Types: Integers, floats, strings, and booleans. 	
 Control Structures: If-else statements, loops (for, while). Functions: Defining and using functions, lambda functions 	
Lab/case Studies	
\cdot Understand and implement the function and lambda function \cdot To create the function that calculates the carbon footprint based on	1

energy consumption (in kilowatt-hours) and the emission factor (kg CO2 per kWh).	
Chapter 3: Data Manipulation and Analysis - Working with Data	1
 Pandas Library: Introduction to data frames, series, and basic operations. 	
 NumPy Library: Handling arrays and numerical data. Data Cleaning: Techniques for handling missing values and data preprocessing. 	
Lab/Case Studies	
 To creating a Series for Renewable Energy Sources 	1
 To creating a Data Frame for Green Technology Projects · Implementation of the basic Operations with Pandas (accessing columns, filtering data, adding new columns, aggregating, and grouping.) 	
 To Create a NumPy array for energy consumption (in MWh) for different renewable sources 	
 NumPy Arrays: Efficient storage and manipulation of numerical data. 	
 Basic Operations: Sum, mean, standard deviation, and reshaping. 	
\cdot To Handling Energy Consumption Data	

	with	
	 Handling Missing Values: Remove rows/columns, impute values with mean/median or use forward/backward filling, Flag missing values. Variables and Feature Engineering 	
	Chapter 4: Data Visualization	1
	 Matplotlib Library: Creating plots, charts, and graphs. 	
	Lab/ Case Studies	
	 Line Plot: To Plotting energy consumption over several months. Bar Chart: To Comparing energy consumption by different types of renewable energy sources. Pie Chart: To Showing the share of each 	1
	renewable energy source in the total energy consumption.	
	 Scatter Plot: To Analyzing the relationship between energy consumption and carbon emissions 	
	 Customization: Customizing a bar chart using Add titles, labels, legends, and adjust styles. 	
Unit 3: Machine Learning		6

	Chapter 1: Introduction to Machine Learning	3
	\cdot Overview of AI and ML	
	\cdot AI-ML Importance of Sustainability	
	\cdot Types of Machine Learning	
	Machine Learning Workflow	
	Chapter 2: Supervised Learning	2
	 Regression: Linear regression, polynomial regression. Model Evaluation - Regression Performance Metrics: R2, MSE, RMSE, MAE Applications of Supervised ML Algorithms in sustainability 	
	Lab/Case Studies	
	 Predicting Solar Power Output Using Linear Regression 	1
Unit 4: Deep Learning		6
	Chapter 1: Introduction to Deep Learning	2
	 Neurons and Layers: Basic building blocks of neural networks, including input, hidden, and output layers. 	
	 Activation Functions: Functions like ReLU, Sigmoid, and Tanh that introduce non- linearity into the network. 	

· Chapi Librarie building image	ter 2: Deep Learning Frameworks and es · Keras API for high-level model g, and Tensorflow, TorchVision for processing	2
Lab/Ca	se Studies	
· Im concep	olementation of Neural Network ts	2
Unit 5: Computer Vision for Green Tec	nnology and Sustainability	6
Chapte · Appli Techno · Imag image · Objects · Imag into set · Feat extract	r 1: Introduction to Computer Vision cations of Computer Vision in Green logy · Tools and Libraries (OpenCV) ge Classification - Categorizing an into predefined classes. ct Detection - Identifying and locating within an image. e Segmentation - Dividing an image gments to simplify analysis. cure Extraction - Identifying and ing significant features from images.	3
Lab/Ca	se Studies	
Forest Waste	Fire Detection Using Satellite Imagery Sorting Using Computer Vision	3
Unit 6: Generative AI		4

	 Chapter 1: Introduction to Generative AI Generative Models: Algorithms that create new data samples similar to the training data. Training and Inference: Training involves learning from data, while inference involves generating new content based on the learned model. 	2
	Lab/Case Studies Understanding the Gen AI Application (chat GPT), and other Gen AI Applications 	2
Unit 7: Model Deployment with	n Streamlit	6
	Chapter 1: GitHub · Create a Project Directory · Initialize GitHub Repository · Set Up Virtual Environment	2
	Chapter 2: Building the ML/DL/Generative Model • Train or Load Your Model • Test Your Model Locally	1
	Chapter 3: Creating the Streamlit App	1

	· Install Streamlit	
	\cdot Build the Streamlit Application	
	\cdot Test the Streamlit App Locally	
	· Push Your Code to GitHub	
	Lab/Case Studies	
	\cdot Model Deployment with Streamlit for a solar	2
	energy model Green AI Project	
Unit 8: AI Ethics, Fairness, and	Sustainability	3
	Chapter 1: Introduction to AI Ethics,	
	Fairness, and Sustainability	
	\cdot AI Ethics: The study of moral issues related	
	to the development and deployment of AI systems.	
	· Fairness: Ensuring AI systems make	
	decisions that are unbiased and equitable	
	across different groups.	
	· Sustainability: Ensuring that AI	
	technologies are developed and deployed in	
	environmental, social, and economic well-	
	being.	
	Chapter 2: AI Ethics: Fundamental Principles	1
	· Transparency: AI systems should be	
	understandable and explainable, allowing	

users and stakeholders to know how decisions are made.	
 Accountability: AI developers and organizations must be accountable for the outcomes of AI systems, especially when they go wrong. 	
 Privacy: Data used in AI should be protected, respecting users' rights to privacy. 	
 Autonomy: AI should enhance human autonomy, ensuring that human control remains at the center of AI-driven decisions. Non-Maleficence: AI should avoid harm, ensuring safety and avoiding unintended negative consequences. 	
Lab/Case studies	
Implementing AI Ethics in a Smart City Traffic Management System	
Chapter 3: Future Trends in AI Ethics, Fairness, and Sustainability	1
 Explainable AI (XAI): The push for models that provide clearer explanations of their decision-making process, enabling better understanding and trust. 	1
 Sustainable AI Development: Research into making AI development more environmentally friendly (e.g., reducing the 	

carbon footprint of AI models).	
 AI for Social Good: Exploring AI applications aimed at solving global challenges, such as poverty, health, and education, while ensuring fairness and ethical use. 	
Lab/ Case Studies	
AI-Driven Smart Urban Agriculture	

ANNEXURE II

Industry use-cases:

1. To implement control structures with a climate dataset using Python to filter, manipulate, and analyze the data.

2. Develop a Python-based tool that calculates the carbon footprint of various activities within an organization.

3. Students can work with energy companies to visualize renewable energy consumption using *Matplotlib* and *Pandas*. They can create predictive models that show how energy consumption patterns change over months, visualizing the data with line plots and bar charts to support decision-making on sustainable energy sources.

4. Students can work with solar energy companies to apply supervised learning models (such as linear regression) for predicting solar energy output based on historical weather data. This use case will enhance energy planning and resource management in the renewable energy sector.

5. To create the Classifying Waste Types for Recycling (to classify them into different categories: Plastic, Metal, Organic, etc) using classification algorithms

6. Clustering Energy Consumption Patterns for Smart Cities.

7. Build a machine learning model in Python to predict future energy demands for urban areas using historical consumption data.

8. Identifying regions prone to extreme poverty based on historical economic and demographic data.

9. Create an AI-powered irrigation system that adjusts water usage based on soil moisture data.

10. Use computer vision to identify and count animal species from images captured by camera.

11. Create an ML model to predict water quality in rivers, helping policymakers ensure safe water resources.

12. Build a machine learning model to analyze automotive engine sensor data and predict maintenance needs, reducing unexpected breakdowns, repair costs, and improving vehicle performance and safety.

13. Utilizing machine learning and generative AI for solid waste management

14. Solar Power Generation Prediction & Analysis using ML

15. To predict the wind power that could be generated from the windmill for the next couple of days

ANNEXURE III

Assessment Plan

S.	Assessment Component	Evaluation	Maximum Marks
No.		Parameters	
1	Attendance in mentor-led sessions	>=60%	10
2	Final Assessment Score	>=60%	50
3	Case Study submission	100 %	10
Total			70 marks