Saas:

COURSE

OBJECTIVE:

Equip participants with the skills to design and build a
complete SaaS application from scratch, covering both
frontend and backend development.

Train participants how to create user-friendly and
responsive interfaces using modern frontend
technologies and frameworks.

Provide comprehensive knowledge on building robust and
scalable backend systems, including API development
and server-side logic.

Effective database design, management, and
optimization techniques to ensure data integrity and
performance.

Participants to deploy and manage their SaaS
applications on cloud platforms, understanding the
principles of cloud infrastructure, scalability, and
maintenance.

COURSE
OUTCOME:

Exhibit the fundamentals of SaaS architecture and
design, developing a scalable and robust SaaS
application from the ground up.

Implement modern frontend interfaces using
contemporary frameworks and develop backend services
with APIs to ensure seamless integration and
functionality.

Effectively ¥ manage databases, ensuring data
persistence, integrity, and optimization for high
performance.

Deploy their applications to cloud platforms,
implementing strategies for application security,
scalability, and maintenance.

Implement payment and subscription management
systems, ensuring secure transactions and overall
application security.

Course Duration: 45 Hours

Course Content:

Unit I - Introduction to SaaS

What is SaaS? - Benefits and challenges of SaaS - Overview of SaaS architecture
Multitenant architecture

Unit II Frontend Development

Introduction to HTML, CSS, and JavaScript-Modern frontend frameworks (React) -
Building responsive user interfaces - State management and routing

Unit III Backend Development

Introduction to backend frameworks (Python Flask)-RESTful APIs and GraphQL-
Authentication and authorization-Error handling and validation-Payment gateway
integration (Razorpay, stripe) - Subscription management

Unit IV Database Management

Introduction to databases (SQL and NoSQL)-Data modeling and schema design with -
MongoDB- CRUD operations - ORM tools and database migrations - Storing and
managing subscription data

Unit V - Cloud Deployment and Security

Introduction to cloud platforms (AWS) - Containerization with Docker - CI/CD pipelines
(Github Actions) - Monitoring and logging Security best practices for web applications
- Scalability strategies - Load balancing and caching - Performance optimization -
Ensuring secure payment processing

Test Projects:

Use Cases

OVERALL COURSE LEARNING OUTCOME ASSESSMENT CRITERIA AND

fundamentals of SaaS
architecture

USECASES
LEARNING ASSESSMENT USE CASES
OUTCOME CRITERIA
Implement the Evaluation: Usecase:1. Design a

Programming and
MCQ

Multitenant SaaS Architecture

e Task 1: Define the

requirements for a
multitenant SaaS
application.

e Task 2: Design the database
schema to support
multitenancy.

e Task 3: Implement tenant
isolation at the application
layer.

e Task 4: Create a configuration
management system for
tenant-specific settings.

e Task 5: Develop a logging and
monitoring solution for tenant

activities.

Design and develop a
scalable SaaS
application

Evaluation:
Programming
Assessment and
project

Use case:2. Create a Scalable
Todo Application

e Task 1: Set up a new
project with frontend and
backend.

e Task 2: Implement user
authentication and
authorization.

e Task 3: Develop a feature
for creating, updating,
and deleting todo items.

e Task 4: Ensure the
application can handle
multiple users
concurrently.

e Task 5: Deploy the
application on a scalable
cloud infrastructure.

Implement
frontend interfaces
using modern
frameworks

Evaluation:
Programming
assignments

Use case:3. Develop a
Responsive User Interface with
React

e Task 1: Set up a React
project using Create React
App.

e Task 2: Design and
implement reusable UI
components.

e Task 3: Integrate a CSS
framework (e.g., Bootstrap)
for responsive design.

e Task 4: Implement state
management using
Context API or Redux.

e Task 5: Fetch and display
data from a backend API.

Develop backend
services with APIs

Evaluation:
Programming and
MCQ

Use case: 4. Build a RESTful
API for a Blogging Platform

Task 1: Set up a backend
project using Flask.

Task 2: Design and
implement API endpoints for
managing blog posts.

Task 3: Add authentication
and aut horization to protect
API endpoints.

Task 4: Implement data
validation and error
handling.

Task 5: Document the API
using Swagger or another
documentation tool.

Manage databases and
data persistence

Evaluation:
Programming and
MCQ

Use case: 5. Design and
Implement a MongoDB
Database

Task 1: Set up a MongoDB
database instance.

Task 2: Design a schema for
a SaaS application using
MongoDB.

Task 3: Implement CRUD
operations using Mongoose
or another ODM.

Task 4: Optimize queries for
performance.

Task 5: Implement
database indexing for
efficient data retrieval.

Implement payment
and subscription
management

Evaluation:
Programming
Assessment and
project

Use case: 6. Integrate
Subscription Billing with
Razorpay

Task 1: Set wup a
Razorpay account and
obtain API keys.

Task 2: Implement
backend logic for
creating and
managing
subscriptions.

Task 3: Create frontend
components for handling
subscription plans.

Task 4: Handle
Razorpay webhooks for
subscription events.
Task 5: Test the
subscription billing
process end-to-end.

Deploy applications to
cloud platforms

Evaluation:
Programming
assignments

Use case: 7. Deploy a
SaaS Application on AWS

e Task 1: Set up an AWS
account and create
necessary resources
(EC2).

e Task 2: Containerize the
application using Docker.

e Task 3: Deploy the
Docker containers to an
AWS Instance

e Task 4: Set up a security

and IP
e Task 5: Monitor the
deployed application

using CloudWatch.

Ensure application
security and scalability

Evaluation:
Programming
Assessment and
project

Use case: 8. Implement
Security Best Practices for a
SaaS Application

e Task 1: Implement user
authentication and
authorization using JWT.

e Task 2: Use HTTPS for
secure communication.

e Task 3: Apply input
validation to prevent SQL
injection and XSS attacks.

e Task 4: Implement rate
limiting to prevent DDoS
attacks.

e Task 5: Conduct a security
audit and fix identified
vulnerabilities.

Optimize application
performance

Evaluation:
Programming and
MCQ

Usecase: 9. Optimize a SaaS
Application for Performance

Task 1: Profile the
application to identify
performance bottlenecks.
Task 2: Implement caching
strategies to reduce
database load.

Task 3: Optimize frontend
performance by minimizing
asset sizes.

Task 4: Use lazy loading for
non-critical resources.

Task 5: Monitor and tune
application performance
over time.

Develop and deploy a
full-fledged SaaS
application

Evaluation:
Programming
Assessment and
project

Usecase: 10. End-to-End
Development of a SaaS
Application

Task 1: Design the
application architecture.
Task 2: Develop the
frontend and backend

components.

Task 3: Integrate the
application with a
database.

Task 4: Implement

payment processing and
subscription

management.

Task 5: Deploy the
application to a cloud
platform and ensure it is
scalable and secure.

Implement the
fundamentals of SaaS
architecture

Evaluation:
Programming
assignments and
MCQ

Usecase: 11. Design a Scalable
SaaSs Architecture for an
E-commerce Platform

e Task 1: Identify the core
requirements of an e-
commerce SaaS
application.

e Task 2: Design a scalable
and flexible database

schema.

e Task 3: Implement
multitenancy for
handling multiple
vendors.

e Task 4: Develop a
configuration system for
vendor-specific settings.

e Task 5: Create a monitoring
system for tracking vendor
activities and performance.

Design and develop a
scalable SaaS
application

Evaluation:
Programming
Assessment and
project

Usecase: 12. Develop a Project
Management SaaS Application

e Task 1: Set up a new project
with a full-stack framework.

e Task 2: Implement
features for project
creation, task
assighment, and

progress tracking.
e Task 3: Develop user roles
and permissions for project

managers and team
members.

e Task 4: Ensure the
application supports

concurrent users with real-
time updates.

e Task 5: Deploy the
application on a cloud
platform with scaling
capabilities.

Implement
frontend interfaces
using modern
frameworks

Evaluation:
Programming
Assessment and
project

Usecase: 13. Create a Dashboard
Interface with React

e Task 1: Set up a React js
project using React CLI.
e Task 2: Design and implement

reusable dashboard
components (charts, tables,
etc.).

e Task 3: Integrate a CSS
framework (e.g., Tailwind
CSS) for consistent styling.

e Task 4: Implement state
management.

e Task 5: Connect the
dashboard to a backend API
to display real-time data.

Develop backend
services with APIs

Evaluation:
Programming
Assessment and
project

Usecase: 14. Build a RESTful API
for an Inventory Management
System

e Task 1: Set up a backend
project wusing Flask and
pymongo

e Task 2: Design and
implement API endpoints
for managing inventory

items.
e Task 3: Add user
authentication and

authorization.
e Task 4: Implement data
validation and error handling.
e Task 5: Document the API
using Swagger or another
documentation tool.

Manage databases and
data persistence

Evaluation:
Programming
assignments

Usecase: 15. Design and
Implement a SQL Database
with PostgreSQL

e Task 1: Set up a PostgreSQL
database instance.

e Task 2: Design a relational
schema for a SaaS
application.

e Task 3: Implement CRUD
operations using an ORM
(e.g., Sequelize).

e Task 4: Optimize
qgueries for
performance.

e Task 5: Implement database
migrations to handle schema
changes.

Implement payment
and subscription
management

Evaluation:
Programming
Assessment and
project

Usecase: 16. Integrate Payment
Processing with PayPal

e Task 1: Set up a PayPal
developer account and obtain
API credentials.

e Task 2: Implement backend
logic for handling payments
and subscriptions.

e Task 3: Develop frontend
components for managing
subscription plans.

e Task 4: Handle PayPal
webhooks for payment
events.

e Task 5: Test the payment
processing flow end-to-
end.

Develop backend Evaluation: Usecase: 17. Implement

services with APIs Programming Role-Based Access Control
Assessment and (RBAC) for a SaaS Application
project

e Task 1: Design a role-
based access
control (RBAC) system with
various roles (e.g., admin,
user, guest).

e Task 2: Implement role
management in the backend
using a framework like Flask

e Task 3: Develop APIs for
assigning roles to users
and managing
permissions.

e Task 4: Secure API
endpoints to ensure only
users with appropriate
roles can access certain
resources.

e Task 5: Create frontend
components to manage user

roles and permissions
dynamically
Create and ensure Evaluation: Usecase: 18. Implement
application security Programming Security Measures for a
and scalability Assessment and Financial SaaS Application
project
e Task 1: Implement user
authentication and
authorization wusing OAuth
2.0.

e Task 2: Use HTTPS for
secure communication.

e Task 3: Apply input
validation to prevent SQL
injection and XSS attacks.

e Task 4: Implement rate
limiting to prevent DDoS
attacks.

e Task 5: Conduct a security
audit and fix identified
vulnerabilities.

Optimize application
performance

Evaluation:
Programming
assignments

Usecase: 19. Enhance
Performance of a Data-
Intensive SaaS
Application

Task 1: Profile the
application to identify
performance bottlenecks.
Task 2: Implement caching
strategies using Redis or
Memcached.

Task 3: Optimize database
queries and indexing.

Task 4: Use lazy loading for
non-critical resources.

Task 5: Monitor and tune
application performance
over time.

Develop and deploy a
full-fledged SaaS
application

Evaluation:
Programming
Assessment and
project

Usecase: 20. End-to-End
Development of a SaaS CRM
Application

Task 1: Design the
application architecture.
Task 2: Develop the
frontend and backend

components.

Task 3: Integrate the
application with a
database.

Task 4: Implement

payment processing and
subscription

management.

Task 5: Deploy the
application to a cloud
platform and ensure it is
scalable and secure.

LIST OF FINAL PROJECTS (20 PROJECTS THAT COMPREHENSIVELY COVER ALL
THE LEARNING OUTCOME)

FINAL PROJECT

WONoU MO R

Design a Multitenant SaaS Architecture
Create a Scalable Todo Application
Develop a Responsive User Interface with React
Build a RESTful API for a Blogging Platform
Design and Implement a MongoDB Database
Integrate Subscription Billing with Stripe
Deploy a SaaS Application on AWS
Implement Security Best Practices for a SaaS Application
Optimize a SaaS Application for Performance
. End-to-End Development of a SaaS Application
. Design a Scalable SaaS Architecture for an E-commerce Platform
. Develop a Project Management SaaS Application
. Create a Dashboard Interface with React
. Build a RESTful API for an Inventory Management System
. Design and Implement a SQL Database with PostgreSQL
. Integrate Payment Processing with PayPal
. Implement Role-Based Access Control (RBAC) for a SaaS Application
. Implement Security Measures for a Financial SaaS Application
. Enhance Performance of a Data-Intensive SaaS Application
. End-to-End Development of a SaaS CRM Application

