## Naan Mudhalvan – Polytechnic – Even Semester 2024-25 4<sup>th</sup> Semester – Course Curriculum

## ABOUT THE COURSE

| COURSE NAME:     | PIPING DESIGN                             |
|------------------|-------------------------------------------|
| TOTAL DURATION:  | 60 HRS                                    |
| MODE OF DELIVERY | PHYSICAL CLASSROOM TRAINING AT RESPECTIVE |
|                  | COLLEGES                                  |
| TRAINER TO       | 1:60                                      |
| STUDENT RATIO:   |                                           |
| TOTAL MARKS:     | 70 (External) + 30 (Internal)             |
|                  | (Final Assessment shall be done by TNSDC) |

| TABLE 1                      |                                                                                                                                                                                                                                                |  |  |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| OVERALL COURSE<br>OBJECTIVE: | <ul> <li>Perform the pipe stress analysis and recommend the optimum pipe routing.</li> </ul>                                                                                                                                                   |  |  |  |
| LEARNING OUTCOMES:           | <ul> <li>Determine the induced stresses in a piping<br/>system for sustained and thermal loads</li> </ul>                                                                                                                                      |  |  |  |
|                              | <ul> <li>Create the piping material library, piping<br/>sections library based on the selected pipe<br/>material and pipe thickness to suit the<br/>given service in CAEPIPE software</li> </ul>                                               |  |  |  |
|                              | <ul> <li>Create the library for sustained loads,<br/>thermal loads and dynamic loads based on<br/>the type of piping system and<br/>geographical condition in CAEPIPE<br/>software, and Create Simple Pipe Routing<br/>and Analysis</li> </ul> |  |  |  |
|                              | <ul> <li>Create the geometry of the complex<br/>piping system and its preliminary routing<br/>using CAEPIPE software</li> </ul>                                                                                                                |  |  |  |
|                              | <ul> <li>Perform pipe stress analysis, and modify<br/>the piping system to bring the enough<br/>inherent flexibility in the piping system<br/>using CAEPIPE software</li> </ul>                                                                |  |  |  |

|           | TABLE 2: MODULE-WISE COURSE CONTENT AND OUTCOME |                                                                                |                                                        |                   |  |
|-----------|-------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------|-------------------|--|
| SL.<br>NO | MODULE<br>NAME                                  | MODULE<br>CONTENT                                                              | MODULE LEARNING<br>OUTCOME                             | DURATION<br>(HRS) |  |
| 1.        | Loads on<br>Pipe                                | <b>Static Load:</b><br>Primary Loads –<br>Dead Loads, Live<br>Loads; Secondary | Determine the<br>induced stresses for<br>sustained and | 15                |  |

|    |                                                                           | Loads – Thermal<br>Expansion &<br>Contraction Loads<br><b>Dynamic Load:</b><br>Wind, Seismic,<br>Vibrational,<br>Discharge Loads<br><b>Demonstration</b><br>of Pipe Flexibility<br>through<br>Examples;<br><b>Determination</b><br>of Longitudinal<br>stress for Primary<br>Loads<br><b>Determination</b><br>of Induced Stress<br>for Secondary<br>Loads | thermal loads<br>analytically                                                                                                                                                                                                                  |    |
|----|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. | Exploration<br>of Stress<br>Analysis<br>Software &<br>Library<br>Creation | Software:<br>Pallets<br>Exploration; Pipe<br>Material Library<br>Creation; Pipe<br>Section Library<br>creation including<br>Pipe Schedule<br>Number                                                                                                                                                                                                      | Handle the software<br>effectively using all its<br>features<br>Can create the<br>required libraries to<br>perform the pipe<br>stress analysis                                                                                                 | 15 |
| 3. | Load Library<br>Creation and<br>Simple Pipe<br>Routing                    | Software:<br>Sustained Load<br>Library Creation;<br>Thermal Load<br>Library Creation;<br>Dynamic Load<br>Library Creation;<br>Simple pipe<br>Routing; Stress<br>Analysis<br>Demonstration                                                                                                                                                                | Create the geometry<br>of the simple piping<br>system<br>Perform the stress<br>analysis<br>Modify the piping<br>system to enhance its<br>flexibility by reducing<br>its rigidness<br>Bring the inherent<br>flexibility in the piping<br>system | 15 |
| 4. | Complex<br>Pipe Routing<br>Creation and<br>Stress<br>Analysis             | Software:<br>Pipe Routing of<br>Complex Piping<br>System; Stress<br>Analysis<br>Demonstration                                                                                                                                                                                                                                                            | Create the geometry<br>of the complex piping<br>system<br>Perform the stress<br>analysis and generate<br>the required reports                                                                                                                  | 10 |
| 5. | Optimum<br>Pipe Routing                                                   | Software:<br>Modify the Pipe<br>Routing; Ensure<br>required Inherent<br>Pipe Flexibility                                                                                                                                                                                                                                                                 | Modify the complex<br>pipe routing<br>Perform the stress<br>analysis and generate<br>the required reports                                                                                                                                      | 5  |

|  | Recommend the        |  |
|--|----------------------|--|
|  | optimum pipe routing |  |

| TABLE 3: OVERALL COURSE LEARNING OUTCOME ASSESSMENT<br>CRITERIA AND USECASES                                                                                                                |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| LEARNING<br>OUTCOME                                                                                                                                                                         | ASSESSMEN<br>T CRITERIA                                                                                                                                                                                                                            | PERFORMA<br>NCE<br>CRITERIA                                                                                                                                                                                                                              | USECASES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| <ol> <li>Determine the<br/>induced stresses in<br/>a piping system for<br/>sustained and<br/>thermal loads</li> </ol>                                                                       | <ul> <li>Recognition<br/>of static<br/>loads and<br/>dynamic<br/>loads to be<br/>considered<br/>for stress<br/>analysis</li> <li>Determinat<br/>ion of Axial<br/>Stress<br/>arises from<br/>axial loads<br/>and<br/>bending<br/>loads</li> </ul>   | <ul> <li>Possible<br/>loads<br/>identificatio<br/>n</li> <li>Determinati<br/>on of Axial<br/>Stress for<br/>individual<br/>loads<br/>analytically</li> <li>Determinati<br/>on of Axial<br/>Stress for<br/>combined<br/>loads<br/>analytically</li> </ul> | Use Case: Axial stress<br>determination for a<br>given service and<br>process requirements.<br>Scenario: Certain flow<br>rate of Service in piping<br>system for a given<br>process flow<br>parameters.<br>Task: Learners must<br>identify the possible<br>loads for the given input<br>process requirements,<br>pipe material and pipe<br>diameter.<br>They should determine<br>the Axial stresses for                                                                                                                                                                         |  |
| 2. Create the piping<br>material library,<br>piping sections<br>library based on<br>the selected pipe<br>material and pipe<br>thickness to suit<br>the given service in<br>CAEPIPE software | <ul> <li>Software<br/>installatio<br/>n based<br/>on<br/>instructio<br/>ns</li> <li>Exploring<br/>all<br/>possible<br/>pallets,<br/>their<br/>importanc<br/>e and<br/>functions</li> <li>Exploring<br/>smart-use<br/>of the<br/>pallets</li> </ul> | <ul> <li>Software<br/>installation</li> <li>Software<br/>customizati<br/>on to meet<br/>the project<br/>requiremen<br/>ts</li> <li>Libraries<br/>creation</li> </ul>                                                                                     | each load analytically.<br>They should determine<br>the Axial stresses for<br>combined loads<br>analytically.<br>Use Case: Exploring<br>the software tool and<br>library creation<br>Scenario: Stress<br>Analysis Software<br>installation in the<br>individual machine.<br>Customization of<br>software for the given<br>piping system with its<br>operating and<br>geometrical parameters<br>Pipe material and pipe<br>section libraries creation<br>Task: Learners must<br>install the software in<br>individual machine.<br>They must customize<br>the software settings to |  |

|                                                                                                                                                                                                       | <ul> <li>Smart<br/>creation<br/>of<br/>material<br/>and pipe<br/>section<br/>libraries<br/>to meet<br/>the<br/>process<br/>requireme<br/>nts</li> </ul>  |                                                                                                                                                                                                                                           | meet the given project<br>requirements and its<br>execution.<br>Learners must create<br>pipe material and pipe<br>section libraries.                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. Create the library<br>for sustained<br>loads, thermal<br>loads and dynamic<br>loads based on the<br>type of piping<br>system and<br><b>geographical</b><br><b>condition</b> in<br>CAEPIPE software | <ul> <li>Smart<br/>creation of<br/>load<br/>libraries to<br/>meet the<br/>process<br/>requiremen<br/>ts</li> </ul>                                       | <ul> <li>Libraries creation</li> </ul>                                                                                                                                                                                                    | Use Case: Load library<br>creation including wind<br>and seismic loads<br>Scenario: Sustained<br>load, thermal load, wind<br>load and seismic load<br>libraries creation<br>Task: Learners must<br>create pipe load<br>libraries.                                                                                                                                        |
| 4. Create the<br>geometry of the<br>complex piping<br>system and its<br>preliminary routing<br>using CAEPIPE<br>software                                                                              | <ul> <li>Creation of<br/>complex<br/>pipe<br/>routing in<br/>software</li> </ul>                                                                         | <ul> <li>Pipe<br/>routing</li> <li>Placing of<br/>supports</li> <li>Placing of<br/>bends</li> <li>Placing of<br/>hangers</li> </ul>                                                                                                       | Use Case: Creation of<br>complex pipe routing for<br>the given process<br>requirements<br>Scenario: Preliminary<br>pipe routing with all its<br>supports and hangers<br>Task: Learners must<br>create complex pipe<br>routing using proper<br>material, pipe sections<br>and loads in the<br>software.                                                                   |
| 5. Perform pipe stress<br>analysis, and<br>modify the piping<br>system to bring the<br>enough inherent<br>flexibility in the<br>piping system<br>using CAEPIPE<br>software                            | <ul> <li>Performanc<br/>e of stress<br/>analysis</li> <li>Report<br/>generation</li> <li>Optimum<br/>pipe<br/>routing<br/>recommen<br/>dation</li> </ul> | <ul> <li>Post<br/>processing<br/>analysis of<br/>results</li> <li>Report<br/>generation</li> <li>Modificatio<br/>n of pipe<br/>routing</li> <li>Post<br/>processing<br/>analysis of<br/>results</li> <li>Report<br/>generation</li> </ul> | Use Case: Performing<br>the stress analysis,<br>modify the pipe routing<br>to bring inherent<br>flexibility by repeatedly<br>performing the stress<br>analysis using software<br>Scenario: Created<br>preliminary pipe routing<br>in software<br>Task: Learners must<br>perform stress analysis<br>of complex pipe routing<br>and recommend the<br>optimum pipe routing. |

|            | TABLE 4: LIST OF FINAL PROJECTS (20 PROJECTS THAT<br>COMPREHENSIVELY COVER ALL THE LEARNING OUTCOME)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SL.<br>NO. | FINAL PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.         | Liquid water at a pressure of 30.0bar at sub-cooled temperature is<br>flowing through a piping system connected among a nozzle (N <sub>1</sub> ) of a<br>vertical water tank to a nozzle (N <sub>2</sub> ) of a vertical water tank and a nozzle<br>(N <sub>3</sub> ) of a horizontal water tank as shown in the isometric here. <b>Perform<br/>the stress analysis using CAEPIPE SW.</b> A sharp-edged orifice plate<br>is placed in between Nodes 5 and 6. No support is provided between<br>nodes 4 – 6. Place suitable support during stress analysis between<br>nodes 4 – 6, if needed. The sub-cooled temperature of the water at<br>30.0bar operating pressure is, T <sub>subcooled</sub> = 220°C. The density and<br>dynamic viscosity of the water at 30.0bar operating pressure and sub-<br>cooled temperature 220°C are, $\rho$ = 840.8kg/m <sup>3</sup> , and 0.000121kg/m-s,<br>respectively.<br><b>Take:</b><br>1. Pipe Material - ASTM A106<br>2. Valve Material - A182 Grade F1<br>3. Flange Material - A182 Grade F1<br>4. Gasket Material - IS 2712 Gr W/2 (Compressed Asbestos Fibre) |
|            | Table.1. Line Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Nod<br>es | Length (Along<br>the Centre Line<br>of the Pipe) in<br>mm | Remarks                                                                                                   |
|-----------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| N1 -<br>1 | 200                                                       | After nozzle Pipe Segment Length                                                                          |
| 1-2       | 500                                                       | Pipe Segment Length                                                                                       |
| 2-3       | 229                                                       | Gate Valve Length                                                                                         |
| 3-4       | 5000                                                      | Pipe Segment Length (At node 4 Rod Hanger is placed)                                                      |
| 4-5       | 5000                                                      | Pipe Segment Length                                                                                       |
| 5-6       | 5000                                                      | Pipe Segment Length (Sharp-Edged Orifice is Placed between 5 <sup>th</sup> node and 6 <sup>th</sup> node) |
| 6-7       | 500                                                       | Pipe Segment Length                                                                                       |
| 7-8       | 200                                                       | Reducer Length                                                                                            |
| 8-9       | 3000                                                      | Pipe Segment Length (at node 9 Hanger is placed -Grinnell)                                                |
| 9-10      | 4000                                                      | Pipe Segment Length                                                                                       |
| 10-<br>11 | 300                                                       | Bellow                                                                                                    |
| 11-<br>12 | 400                                                       | Pipe Segment Length                                                                                       |
| 6-13      | 5000                                                      | Pipe Segment Length                                                                                       |
| 13-<br>14 | 292                                                       | Globe Valve Length                                                                                        |
| 14-<br>15 | 500                                                       | Pipe Segment Length                                                                                       |



**Note:** List of 19 Problem statements, Required Input Data, Pipe routing/layout, and line data will be provided by L&T EduTech during Project Delivery.

| TABLE 5: COURSE ASSESSMENT RUBRICS (TOTAL MARKS: 70) |                      |                |           |    |  |
|------------------------------------------------------|----------------------|----------------|-----------|----|--|
| ASSESSMENT<br>CRITERIA                               | DESCRIBE<br>BELOW CA | TOTAL<br>MARKS |           |    |  |
|                                                      | FAIR                 | GOOD           | EXCELLENT |    |  |
| Recognition of static                                | 2 - 2.5              | 2.6 - 3.1      | 3.2 - 4   | 4  |  |
| loads and dynamic loads                              |                      |                |           |    |  |
| to be considered for                                 |                      |                |           |    |  |
| stress analysis                                      |                      |                |           |    |  |
| Determination of Axial                               | 5 - 6.7              | 6.8 - 8.5      | 8.6 - 10  | 10 |  |
| Stress arises from axial                             |                      |                |           |    |  |
| loads and bending loads                              |                      |                |           |    |  |
| Software installation                                | 2 - 2.5              | 2.6 - 3.1      | 3.2 - 4   | 4  |  |
| based on instructions                                |                      |                |           |    |  |
| Exploring all possible                               | 2 - 2.5              | 2.6 - 3.1      | 3.2 - 4   | 4  |  |
| pallets, their importance                            |                      |                |           |    |  |
| and functions and                                    |                      |                |           |    |  |
| Exploring smart-use of                               |                      |                |           |    |  |
| the pallets                                          |                      |                |           |    |  |
| Smart creation of material                           | 5 - 6.4              | 6.5 - 7.9      | 6.5 - 8   | 8  |  |
| and pipe section libraries                           |                      |                |           |    |  |
| to meet the process                                  |                      |                |           |    |  |
| requirements                                         | 2 2 0                | 20.47          | 1.0.0     | 6  |  |
| Smart creation of load                               | 3 - 3.8              | 3.9 - 4.7      | 4.8 - 6   | 6  |  |
| libraries to meet the                                |                      |                |           |    |  |
| process requirements                                 | 10 12 0              | 12 15 0        | 1.6 20    | 20 |  |
| Creation of complex pipe                             | 10 - 12.8            | 13-15.8        | 16 - 20   | 20 |  |
| routing in software                                  |                      | 2 2 2 2        | 24.2      | 2  |  |
| Performance of stress                                | 1.5 - 1.9            | 2 - 2.3        | 2.4 - 3   | 3  |  |
| analysis                                             |                      |                | 2.4.2     | 2  |  |
| Report generation                                    | 1.5 - 1.9            | 2 - 2.3        | 2.4 - 3   | 3  |  |
| Optimum pipe routing                                 | 4 - 5.1              | 5.2 - 6.3      | 6.4 - 8   | 8  |  |
| recommendation                                       |                      |                | <b>.</b>  | 70 |  |
|                                                      |                      |                | Total     | /0 |  |